[1]
C. Lewis, R. Buanpa, S. Kiatkamjornwong, Effect of Rubber Ratio, Carbon Black Level, and Accelerator Level on Natural Rubber/Bromobutyl Rubber Blend Properties, J. Appl. Polym. Sci, 90 (2003) 3059-3068.
DOI: 10.1002/app.13036
Google Scholar
[2]
F. Abd-El Salam, M.H. Abd-El Salam, M.T. Mostafa, M.R. Nagy, M.I. Mohamed, Effect of the vulcanizing system on the mechanical properties of butyl rubber/ethylene propylene diene monomer-carbon black blends, J. Appl. Polym. Sci, 90 (2003).
DOI: 10.1002/app.12739
Google Scholar
[3]
M.H. Abd-El Salam, E.E. Abdel-Hady, H.F.M. Mohamed, A.S. Ibrahim, The effect of wheat hay on carbon black loaded EPDM composite studied by positron annihilation lifetime spectroscopy, Mater. Sci. Forum., 445-6 (2004) 259-261.
DOI: 10.4028/www.scientific.net/msf.445-446.259
Google Scholar
[4]
M.H. Abd-El Salam, A.M. Ismail, Electrical conductivity and electric modulus of stable Kevlar (R) fiber loaded HAF/NBR rubber composite, J. Appl. Polym. Sci., 124 (2012) 1359-1365.
DOI: 10.1002/app.34620
Google Scholar
[5]
S.L. Abd-El-Messieh, D.E. El-Nashar, M.G. Khafagi, Compatibility investigation of microwave irradiated acrylonitrile butadiene/ethylene propylene diene rubber blends, Polym. Plast. Technol., 43 (2004) 135-158.
DOI: 10.1081/ppt-120027468
Google Scholar
[6]
S.L. Abd-El-Messieh, D.E. El-Nashar, A.F. Younan, K.N. Abd-El-Nour, Investigations on NBR/EPDM - Materials loaded with nano scaled Carbon Black with the applicability of conductivity Models and mechanical properties, Kgk-Kaut. Gummi. Kunst., 66 (2013).
DOI: 10.1109/icsd.2007.4290805
Google Scholar
[7]
M.M. Abou Zeid, Radiation effect on properties of carbon black filled NBR/EPDM rubber blends, Eur. Polym. J., 43 (2007) 4415-4422.
DOI: 10.1016/j.eurpolymj.2007.07.013
Google Scholar
[8]
A.I. Abou-Kandil, M.S. Gaafar, Effect of Different Types of Carbon Black on the Mechanical and Acoustic Properties of Ethylene-Propylene-Diene Rubber, J. Appl. Polym. Sci, 117 (2010) 1502-1508.
DOI: 10.1002/app.31999
Google Scholar
[9]
S. Agnelli, G. Ramorino, S. Passera, J. Karger-Kocsis, T. Ricco, Fracture resistance of rubbers with MWCNT, organoclay, silica and carbon black fillers as assessed by the J-integral: Effects of rubber type and filler concentration, Express Polym. Lett., 6 (2012).
DOI: 10.3144/expresspolymlett.2012.61
Google Scholar
[10]
S.A. Al-Gahtany, Mechanical properties of styrene butadiene rubber-/ethylene propylene diene monomer rubber-based conductive blends, J. Elastom. Plast, 45 (2013) 367-389.
DOI: 10.1177/0095244312454035
Google Scholar
[11]
O.A. Al-Hartomy, A.A. Al-Ghamdi, S.A.F. Al Said, N. Dishovsky, M. Mihaylov, M. Ivanov, L. Ljutzkanov, Influence of the Carbon-Silica Reinforcing Filler, Obtained via Pyrolysis of Waste Green, Tyres on the Properties of EPDM Based Composites, Kgk-Kaut. Gummi. Kunst., 68 (2015).
DOI: 10.1177/147776061503100102
Google Scholar
[12]
S.O. Pongdhorn, S. Chakrit, T. Uthai, H. Kannika, Comparison of reinforcing efficiency between Si-69 and Si-264 in a conventional vulcanization system, Polym. Test., 23 (2004) 871-879.
DOI: 10.1016/j.polymertesting.2004.05.008
Google Scholar
[13]
Y.T. Vu, J.E. Mark, L.H. Pham, M. Engelhardt, Clay nanolayer reinforcement of cis-1, 4-polyisoprene and epoxidized natural rubber. J. Appl. Polym. Sci., 82 (2001) 1391-1403.
DOI: 10.1002/app.1976
Google Scholar
[14]
J. Su, S.J. Chen, J. Zhang, Z.Z. Xu, Combined effect of VA content and pH level of filler on properties of EPDM/SmBO3 and EPDM/ATO composites reinforced by three types of EVA, J Appl Polym. Sci. 117 (2009) 1741-1749.
DOI: 10.1002/app.32106
Google Scholar
[15]
J. Su, S.J. Chen, J. Zhang, Reinforcement of EPDM/SmBO3 and EPDM/ATO composites by four polyolefins: assessment of branch content and crystallinity, J. Elastom. Plast, 42 (2010) 471-492.
DOI: 10.1177/0095244310379980
Google Scholar
[16]
S. Lemanceau, G. Bertrand-Chadeyron, R. Mahiou, M. El-Ghozzi, J.C. Cousseins, P. Conflant, R.N. Vannier, Synthesis and Characterization of H-LnBO3 Orthoborates (Ln 5La, Nd, Sm, and Eu), J. Solid State Chem, 148 (1999) 229-235.
DOI: 10.1006/jssc.1999.8437
Google Scholar
[17]
T. Araki, J.L. White, Shear viscosity of rubber modified thermoplastics: Dynamically vulcanized thermoplastic elastomers and ABS resins at very low stress, Polym. Eng. Sci., 38 (1998) 590-595.
DOI: 10.1002/pen.10222
Google Scholar
[18]
W. Arayapranee, G.L. Rempel, A comparative study of the cure characteristics, processability, mechanical properties, ageing, and morphology of rice husk ash, silica and carbon black filled 75 : 25 NR/EPDM blends, J. Appl. Polym. Sci., 109 (2008).
DOI: 10.1002/app.28111
Google Scholar
[19]
E. Ateia, S.A. Khairy, S.I. Sharra, Effect of swelling process on the thermoelastic temperature change of ethylene propylene diene rubber filled with carbon black, J. Appl. Polym. Sci, 74 (1999) 1890-1897.
DOI: 10.1002/(sici)1097-4628(19991121)74:8<1890::aid-app2>3.0.co;2-4
Google Scholar
[20]
S. Azarmgin, B. Kaffashi, S.M. Davachi, Investigating Thermal Stability and Flame Retardant Properties of Synthesized Halloysite Nanotubes (HNT)/Ethylene Propylene Diene Monomer (EPDM) Nanocomposites, Int. Polym. Proc, 30 (2015) 29-37.
DOI: 10.3139/217.2789
Google Scholar
[21]
S. Bafna, The Effect of Temperature on the Tear Behavior of Various Elastomers, J. Test. Eval., 42 (2014) 540-549.
Google Scholar
[22]
M. Muasher, M. Sain, The efficacy of photostabilizers on the color change of wood filled plastic composites, Polym. Degrad. Stab, 91 (2006) 1156-1165.
DOI: 10.1016/j.polymdegradstab.2005.06.024
Google Scholar