Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: February 2012
Authors: Jie Kang, Gui Xia Dong, Qiu Xiang Liu
Table 1 Chemical composition of samples studied
Serial number
AlN /vol %
Mo /vol %
CaF2 /wt%
CaCO3 /wt%
1
82
18
1
0
2
82
18
2
0
3
82
18
3
0
4
82
18
0
1
5
82
18
0
2
6
7
82
80
18
20
0
1
3
0
8
80
20
0
1
Results and discussion
The XRD patterns of AlN-Mo composite with hot pressed sintering is shown in Fig.1.
Mo2C has a melting point of 2520˚C, a thermal conductivity of 21.5 W·m-1·K-1 and an electric conductivity of 72 Ω·cm.
The thermal conductivity of the composite is 159 W·m-1·K-1 with 18vol % Mo content and is 157.8 W·m-1·K-1 with 20vol% content according to the formula (1).And the thermal conductivity of the former is slightly higher than the latter.
Reference [1] L.Q.
Soc. 62(9-10), 1979, 476-479
Mo2C has a melting point of 2520˚C, a thermal conductivity of 21.5 W·m-1·K-1 and an electric conductivity of 72 Ω·cm.
The thermal conductivity of the composite is 159 W·m-1·K-1 with 18vol % Mo content and is 157.8 W·m-1·K-1 with 20vol% content according to the formula (1).And the thermal conductivity of the former is slightly higher than the latter.
Reference [1] L.Q.
Soc. 62(9-10), 1979, 476-479
Online since: January 2013
Authors: A.N. Alias, M.H. Jumali, Intan Syaffinazzilla Zaine, Z.M. Zabidi
Zabidi 1,b, A.
Table 1.
Sample Ratio (tungsten organometallic sol:PANi) tungsten organometallic sol (mL) (1 mL ~ 1 g) PANi (g) S1 100:0 4.00 0.00 S2 100:1 4.00 0.04 S3 100:4 4.00 0.16 Figure 1: Structure of sensor fabrication.
References [1] H.
Arshak, "Preparation and characterisation of ZnFe2O4/ZnO polymer nanocomposite sensors for the detection of alcohol vapours," Superlattices and Microstructures, vol. 42, pp. 479-488, 2007
Table 1.
Sample Ratio (tungsten organometallic sol:PANi) tungsten organometallic sol (mL) (1 mL ~ 1 g) PANi (g) S1 100:0 4.00 0.00 S2 100:1 4.00 0.04 S3 100:4 4.00 0.16 Figure 1: Structure of sensor fabrication.
References [1] H.
Arshak, "Preparation and characterisation of ZnFe2O4/ZnO polymer nanocomposite sensors for the detection of alcohol vapours," Superlattices and Microstructures, vol. 42, pp. 479-488, 2007
Online since: November 2016
Authors: Ivaldo D. Valarelli, Fábio A. Moizés, Valter Roberto de Brito Celestino, Rafael A. Pinholati Eugênio, Fernanda Christiane Rossetto Dinhane, Marcus Antonio Pereira Bueno
The density had values within the range specified by NBR 14810-1 (2006) and ANSI A208.1 (1999) from an average density panel, with the specified range is 0.551 g / cm3 to 0.750 g / cm3.
References [1] G.
Barbosa, The challenge of sustainable development, Visions Magazine, Rio de Janeiro, 1(4) (2008) 1-10.
Vezzoli, Development of Sustainable Products. 1.ed. 2.
X World Forest Congress, 6 (1992) 479-483, Paris, (Inglês)
References [1] G.
Barbosa, The challenge of sustainable development, Visions Magazine, Rio de Janeiro, 1(4) (2008) 1-10.
Vezzoli, Development of Sustainable Products. 1.ed. 2.
X World Forest Congress, 6 (1992) 479-483, Paris, (Inglês)
Online since: March 2015
Authors: Olga D. Arefieva, Ludmila A. Zemnukhova, Anastasia A. Kovshun
Table 1 lists the description of silica-containing substances extracted from S1.
Table 1.
For example, Ssp may be varied from 5.9 m2/g to 479 m2/g as in [6].
Fig. 1.
Maiorov: Inorganic Materials Vol. 50(1) (2014), p. 75-81
Table 1.
For example, Ssp may be varied from 5.9 m2/g to 479 m2/g as in [6].
Fig. 1.
Maiorov: Inorganic Materials Vol. 50(1) (2014), p. 75-81
Online since: November 2016
Authors: Deepa Prabhu, Padmalatha Padmalatha
Table 1.
Fig. 1.
Electrochemical parameters obtained from Tafel polarization measurements T (℃) Conc. of inhibitor (g L−1) Ecorr (mVvs SCE) icorr (m A cm−2) ba (m V dec−1) −bc (m V dec−1) IE (%) 30 Blank −156 3.26 485 472 − 0.05 −159 1.78 493 501 45.33 0.1 −159 1.60 495 486 50.78 0.2 −158 1.46 494 478 55.14 0.3 −158 1.14 498 471 65.01 0.4 −158 0.97 499 464 70.11 40 Blank −161 4.24 489 489 − 0.05 −160 1.95 491 485 53.98 0.1 −159 1.65 492 483 61.11 0.2 −158 1.49 494 480 64.77 0.3 −158 1.27 496 479 69.99 0.4 −157 1.10 499 478 74.08 50 Blank −162 5.50 488 480 − 0.05 −161 2.04 495 478 62.94 0.1 −160 1.72 498 476 68.67 0.2 −159 1.50 499 473 72.67 0.3 −158 1.23 502 472 77.67 0.4 −156 1.00 505 440 81.87 Table 3.
Activation and thermodynamic parameters for the corrosion of 6063 Al alloy Activation parameters Conc. of inhibitor (g L−1) Ea (kJ mol−1) ∆Ha (kJ mol−1) ∆Sa (J mol−1 K−1) Blank 21.61 19.05 −148.69 0.05 6.96 9.57 −214.05 0.1 4.75 7.36 −223.78 0.2 4.51 3.11 −232.09 0.3 1.82 1.90 −246.98 0.4 0.50 0.78 −255.46 Thermodynamic parameters −∆Goads (kJ mol−1) ∆Hoads (kJ mol−1) ∆Soads (J mol−1 K−1) 17.60 23.92 −136.87 18.10 19.02 19.54 20.30 Adsorption behavior.
References [1] C.
Fig. 1.
Electrochemical parameters obtained from Tafel polarization measurements T (℃) Conc. of inhibitor (g L−1) Ecorr (mVvs SCE) icorr (m A cm−2) ba (m V dec−1) −bc (m V dec−1) IE (%) 30 Blank −156 3.26 485 472 − 0.05 −159 1.78 493 501 45.33 0.1 −159 1.60 495 486 50.78 0.2 −158 1.46 494 478 55.14 0.3 −158 1.14 498 471 65.01 0.4 −158 0.97 499 464 70.11 40 Blank −161 4.24 489 489 − 0.05 −160 1.95 491 485 53.98 0.1 −159 1.65 492 483 61.11 0.2 −158 1.49 494 480 64.77 0.3 −158 1.27 496 479 69.99 0.4 −157 1.10 499 478 74.08 50 Blank −162 5.50 488 480 − 0.05 −161 2.04 495 478 62.94 0.1 −160 1.72 498 476 68.67 0.2 −159 1.50 499 473 72.67 0.3 −158 1.23 502 472 77.67 0.4 −156 1.00 505 440 81.87 Table 3.
Activation and thermodynamic parameters for the corrosion of 6063 Al alloy Activation parameters Conc. of inhibitor (g L−1) Ea (kJ mol−1) ∆Ha (kJ mol−1) ∆Sa (J mol−1 K−1) Blank 21.61 19.05 −148.69 0.05 6.96 9.57 −214.05 0.1 4.75 7.36 −223.78 0.2 4.51 3.11 −232.09 0.3 1.82 1.90 −246.98 0.4 0.50 0.78 −255.46 Thermodynamic parameters −∆Goads (kJ mol−1) ∆Hoads (kJ mol−1) ∆Soads (J mol−1 K−1) 17.60 23.92 −136.87 18.10 19.02 19.54 20.30 Adsorption behavior.
References [1] C.
Online since: May 2012
Authors: Xian Hua Liu, Yi Ren Lu, Yan Ping Zong, Xi Wen Du, Xiao Xuan Shi
The details are listed in Tab. 1.
Through analyzing the abundance of MS charts, the molecular structure of 2,4,5-TCP and molecular weight, the most likely intermediates such as (1,4-dichloro-Naphthalene), (phthalic acid, isobutyl octadecyl ester), (1,2–Benzenedicarboxylic acid, bis(2-methylpropyl) ester), (1,2-Benzenedicarboxylic acid, mono(2-ethylhexy) ester), etc. are speculated.
(1)
References [1] Bobu Maria,Wilson Steven,Greibrokk Tyge,et al.Chemosphere 63 ( 2006 ) 1723-1723
[2] T.Peternel Igor,Koprivanac Natalija,M.Loncaric Bozic Ana,et al.Journal of Hazardous Materials 148 (2007) 479-480
Through analyzing the abundance of MS charts, the molecular structure of 2,4,5-TCP and molecular weight, the most likely intermediates such as (1,4-dichloro-Naphthalene), (phthalic acid, isobutyl octadecyl ester), (1,2–Benzenedicarboxylic acid, bis(2-methylpropyl) ester), (1,2-Benzenedicarboxylic acid, mono(2-ethylhexy) ester), etc. are speculated.
(1)
References [1] Bobu Maria,Wilson Steven,Greibrokk Tyge,et al.Chemosphere 63 ( 2006 ) 1723-1723
[2] T.Peternel Igor,Koprivanac Natalija,M.Loncaric Bozic Ana,et al.Journal of Hazardous Materials 148 (2007) 479-480
Online since: September 2007
Authors: Yo Kojima, Shigeharu Kamado, Kun Wu, Ming Yi Zheng, Xiao Guang Qiao, Shi Wei Xu, Wei Min Gan
Microstructure and Tensile Properties of a Mg-Zn-Y-Zr Alloy Containing
Quasicrystal Phase Processed by Equal Channel Angular Pressing
ShiWei XU
1
, MingYi ZHENG1, a
, XiaoGuang QIAO
1
and WeiMin GAN
1
,
Kun WU
1, Shigeharu KAMADO2 and Yo.
However, the icosahedral phase formed as a coarse eutectic structure on solidification [1].
Fig. 4 {0002} pole figures in (a) as-extruded, (b) 1-pass ECAPed, (c) 8-pass ECAPed alloy.
References [1] Z.
Forum Vol. 475-479 (2005), p. 469 [4] D.
However, the icosahedral phase formed as a coarse eutectic structure on solidification [1].
Fig. 4 {0002} pole figures in (a) as-extruded, (b) 1-pass ECAPed, (c) 8-pass ECAPed alloy.
References [1] Z.
Forum Vol. 475-479 (2005), p. 469 [4] D.
Online since: November 2012
Authors: Rong Fan, Zhen Liu, Wen Ji Liu, Chao Sheng Song
Table 1 Equivalent supporting stiffness of shaft-bearing system
Pinion
Orientation
X
Y
Z
RX
RY
Equivalent supporting stiffness
N/mm
5.57e+6
3.70e+3
-203.46
4.01e+5
-1.77e+8
3.68e+3
5.55e+6
-511.37
1.76e+8
6.06e+4
-204.19
-511.37
2.64e+06
-2.13e+4
1.27e+4
3.91e+5
1.76e+8
-2.14e+4
4.63e+10
7.51e+7
-1.82e+8
5.68e+04
1.28e+4
7.45e+4
4.64e+10
Gear
Equivalent supporting stiffness
N/mm
5.68e+6
3.79e+3
-213.46
4.61e+5
-1.97e+8
3.78e+3
5.70e+6
-521.37
1.96e+8
6.36e+4
-224.19
-521.37
3.21e+06
-2.53e+4
1.67e+4
4.91e+5
1.96e+8
-2.54e+4
5.12e+10
7.51e+7
-2.02e+8
6.68e+04
1.58e+4
7.05e+4
5.10e+10
Computational results
Numerical integration applying the explicit 4/5th order Runge-Kutta formula by Matlab and the implicit direct integration algorithm by Abaqus were used to solve the lumped parameter dynamic model of the geared rotor system and the FEM dynamic model of the housing sub-system, respectively.
The acceleration responses in time and frequency domain of sensor 1 and sensor 2 as shown in Fig.1 (b) are shown in Fig.4 and 5, respectively.
Also, it can be seen that the vibration peaks of sensor 1 and sensor 2 appear at about 976 Hz and 1953 Hz.
References [1] Mitome, K., T.
Advanced Materials Research, 2012, Vols. 479-481,pp.752-757.
The acceleration responses in time and frequency domain of sensor 1 and sensor 2 as shown in Fig.1 (b) are shown in Fig.4 and 5, respectively.
Also, it can be seen that the vibration peaks of sensor 1 and sensor 2 appear at about 976 Hz and 1953 Hz.
References [1] Mitome, K., T.
Advanced Materials Research, 2012, Vols. 479-481,pp.752-757.
Online since: August 2014
Authors: Jia Li Shentu, Chen Chao Shen, Dong Sheng Shen, Mei Zhen Wang, Xiao Qing Tao
Earthworm survived at 0~16 mg kg-1.
However, on day 4 an obvious increase in the activity of CAT was recorded at 4 mg kg-1 and 8 mg kg-1 PCBs compared to the control.
In comparison with the control, no significant changes in SOD activity were observed on day 4, 8, 16 after exposure to 1-16 mg kg-1 PCBs.
References [1] S.
Vol. 47(1974): p169-479
However, on day 4 an obvious increase in the activity of CAT was recorded at 4 mg kg-1 and 8 mg kg-1 PCBs compared to the control.
In comparison with the control, no significant changes in SOD activity were observed on day 4, 8, 16 after exposure to 1-16 mg kg-1 PCBs.
References [1] S.
Vol. 47(1974): p169-479
Online since: September 2013
Authors: Vladimir Popov, Anna Gorbenko
Maximize:
such that
for each mission M[j],
for each sensor S[i],
for each mission M[j],
where x[i,j] from {0;1}, for each variable x[i,j], y[i,k] from {0;1}, for each variable y[i,k], u[j] from {0;1}, for each variable u[j].
Table 1.
References [1] A.
Sci 6(1):4729 [8] A.
Popov (2012) Advanced Studies in Biology 4(6):479 [29] A.
Table 1.
References [1] A.
Sci 6(1):4729 [8] A.
Popov (2012) Advanced Studies in Biology 4(6):479 [29] A.