Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: May 2011
Authors: Yaw Shyan Tsay, Yu Chun Yeh, Che Ming Chiang
Figure 1.
Sketch of experimental set-up for MBV determination Table 1.
References [1] Arundel, A.V., E.M.
J., “Airborne micro-organisms: Survival tests with four viruses”, the Journal of Hygiene, Vol. 59, No. 4: 479-486, 1961
[7] JIS A1470-1:2008, “Determination of water vapour adsorption / desorption properties for building materials -- Part 1: Response to humidity variation”
Sketch of experimental set-up for MBV determination Table 1.
References [1] Arundel, A.V., E.M.
J., “Airborne micro-organisms: Survival tests with four viruses”, the Journal of Hygiene, Vol. 59, No. 4: 479-486, 1961
[7] JIS A1470-1:2008, “Determination of water vapour adsorption / desorption properties for building materials -- Part 1: Response to humidity variation”
Online since: January 2013
Authors: Ke Feng Cai, Zhen Qin, Yuan Yuan Wang, Feng Yuan Li, Song Chen
Bi2Te3 bulk materials were prepared by combining chemical bath method and hot pressing at 80 MPa and 375 oC for 1 h.
Fig.1 Standard data of Bi2Te3 (JCPDS card 15-0863) (a), typical X-ray diffraction pattern of bulk I (b) and bulk II (c).
The bulks consist of randomly oriented plate-like grains (about 1 μm big and a few hundreds nm thick).
References [1] J.P.
Science 2 (2009)466–479
Fig.1 Standard data of Bi2Te3 (JCPDS card 15-0863) (a), typical X-ray diffraction pattern of bulk I (b) and bulk II (c).
The bulks consist of randomly oriented plate-like grains (about 1 μm big and a few hundreds nm thick).
References [1] J.P.
Science 2 (2009)466–479
Online since: April 2013
Authors: Shao Yi Wu, Min Quan Kuang, Bo Tao Song, Xian Fen Hu
The perturbation formulas of these quantities are expressed as follows [14]:
g// = gs + 8kz/E1 + kz2/E22 + 4kz2/(E1E2) -gsz2[1/E12-1/(2E22)] + kz3(4/E1-1/E2) /E22
-2kz3[2/(E12E2)-1/(E1E22)] + gsz3[1/(E1E22) - 1/(2E23)] ,
g^ = gs +2kz/E2 - 4kz2/(E1E2) + kz2(2/E1-1/E2)/E2 + 2gs z2 / E12
+kz3(2/E1-1/E2)(1/E2+2/E1)/(2E2)-gsz3[1/(2E12E2)-1/(2E1E22) +1/(2E23)] ,
A// = P (–κ – 4H/7 + (g// – gs) + 3(g^ – gs)/7),
A^= P (–κ + 2H/7 + 11(g^ – gs)/14)
Applying the perturbation method similar to that in Ref. [11], the high order perturbation formulas of Knight shifts can be obtained for a tetragonally elongated octahedral 3d9 cluster: K// =2NAμB23d{8k/E1+kz/E22+4kz/(E1E2)-gsz[1/E12-1/(2E22)]
+kz2(4/E1-1/E2)/E22 -2kz2[2/(E12E2) -1/(E1E22)] + gsz2[1/(E1E22) - 1/(2E23)]},
K^ =2 NA μB23d {2k/E2-4kz/(E1E2)+kz(2/E1-1/E2)/E2 + kz2(2/E1-1/E2)(1/E2+2/E1)/(2E2)
+2gsz/E12 - gsz2[1/(2E12E2) -1/(2E1E22)+1/(2E23)]} (4)
Then these formulas are adopted for the studies of Tl2Ba2CuO6+y, where Cu2+ locates on a tetragonally elongated oxygen octahedron.
References [1] T.G.
Taylor, Physica Status Solidi RL, 5[1] (2011) 1
Pawar, Journal of Alloys and Compounds, 479 (2009) 732
Applying the perturbation method similar to that in Ref. [11], the high order perturbation formulas of Knight shifts can be obtained for a tetragonally elongated octahedral 3d9 cluster: K// =2NAμB2
References [1] T.G.
Taylor, Physica Status Solidi RL, 5[1] (2011) 1
Pawar, Journal of Alloys and Compounds, 479 (2009) 732
Online since: October 2007
Authors: Jan Raška
The
complet constitutive equation (Eq. 1) can be
also re-writed into 4 independent equations
(traction, shear, flexion, twist) [1, 2, 3, 4].
The half-wave number n (the half-wave number perpendicular to the load direction) is equal n=1, it corresponds to the minimum critical load.
At the Fig. 4, there are shown the results of the finite element method 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 0 1 2 3 4 5 6 7 8 9 10 aspect ratio a/b [-] critical unitary forse N 0 [Nmm-1] flexural/tw ist anizotropy ortotropy m=6 m=7 m=1 m=2 m=3 m=4 m=5 m=8 m=9 m=10 Fig. 3: Critical load as the function of the plate as- pect ratio 0,890 0,895 0,900 0,905 0,910 0,915 0,920 0 1 2 3 4 5 6 7 8 9 10 aspect ratio a/b [-] knockdown factor ηηηη [-] m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 Fig. 4: Knockdown factor as the function of the plate aspect ratio Table 1: Approximation function coefficients m u m v m w m s 1 -1,560 0,191 1,807 -0,00858 2 -1,562 -0,453 1,990 3 -1,066 -0,701 2,038 4 -0,818 -0,813 2,064 5 -0,696 -0,876 2,079 6 -0,575 -0,914 2,090 7 -0,479 -0,941 2,097 8 -0,242 -0,953 2,102 9 -0,180 -0,965 2,107 10 0,007 -0,966 2,110 analysis (points) and the approximation (curves).
For the simple approximation function expresion, we define a non-dimensional geometric variable as follows: ( ) 1, 1 −= b a m b a mr (7) The general bi-quadratic approximation function of knockdown factor depends on the geometric variable and on the anisotropy factor: ( ) ( ) ( )swrvrur mm m +++−= δδ δη 2 1, (8) where the values of coefficients um, vm, wm and s are summarised on the Table 1.
References [1] Weaver, P.
The half-wave number n (the half-wave number perpendicular to the load direction) is equal n=1, it corresponds to the minimum critical load.
At the Fig. 4, there are shown the results of the finite element method 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 0 1 2 3 4 5 6 7 8 9 10 aspect ratio a/b [-] critical unitary forse N 0 [Nmm-1] flexural/tw ist anizotropy ortotropy m=6 m=7 m=1 m=2 m=3 m=4 m=5 m=8 m=9 m=10 Fig. 3: Critical load as the function of the plate as- pect ratio 0,890 0,895 0,900 0,905 0,910 0,915 0,920 0 1 2 3 4 5 6 7 8 9 10 aspect ratio a/b [-] knockdown factor ηηηη [-] m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 Fig. 4: Knockdown factor as the function of the plate aspect ratio Table 1: Approximation function coefficients m u m v m w m s 1 -1,560 0,191 1,807 -0,00858 2 -1,562 -0,453 1,990 3 -1,066 -0,701 2,038 4 -0,818 -0,813 2,064 5 -0,696 -0,876 2,079 6 -0,575 -0,914 2,090 7 -0,479 -0,941 2,097 8 -0,242 -0,953 2,102 9 -0,180 -0,965 2,107 10 0,007 -0,966 2,110 analysis (points) and the approximation (curves).
For the simple approximation function expresion, we define a non-dimensional geometric variable as follows: ( ) 1, 1 −= b a m b a mr (7) The general bi-quadratic approximation function of knockdown factor depends on the geometric variable and on the anisotropy factor: ( ) ( ) ( )swrvrur mm m +++−= δδ δη 2 1, (8) where the values of coefficients um, vm, wm and s are summarised on the Table 1.
References [1] Weaver, P.
Online since: June 2007
Authors: B.J. Kim, Young Hoon Moon, K.S. Park, K.H. Choi, Chester J. van Tyne
Kim
1, a, K.
Choi 1, b, K.
Thus, the nonuniformity fR can be estimated by Eq.(1)
References [1] S.Z.
Forum Vol. 475-479 (2005), p. 4215 [3] W.
Choi 1, b, K.
Thus, the nonuniformity fR can be estimated by Eq.(1)
References [1] S.Z.
Forum Vol. 475-479 (2005), p. 4215 [3] W.
Online since: August 2018
Authors: Khaled A. Abou-El-Hossein, Muhammad Mukhtar Liman, Peter Babatunde Odedeyi
Table 1.
The neural network architecture used for this study is shown in Fig. 1.
Fig. 1.
References [1] Al Hazza M H F, Adesta E Y, Seder A M.
"Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks," International Journal of Machine Tools and Manufacture, vol. 45, pp. 467-479, 2005
The neural network architecture used for this study is shown in Fig. 1.
Fig. 1.
References [1] Al Hazza M H F, Adesta E Y, Seder A M.
"Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks," International Journal of Machine Tools and Manufacture, vol. 45, pp. 467-479, 2005
Online since: April 2015
Authors: Gennady V. Alekseev, Aleksey Lobanov
Lemma 1.
Theorem 1.
Usp. 53 (2010) 455-479
Math. 7 (2013) 1-13
Math. 1 (1998) 22-44
Theorem 1.
Usp. 53 (2010) 455-479
Math. 7 (2013) 1-13
Math. 1 (1998) 22-44
Online since: June 2010
Authors: Zhi Hua Hu
The emergency resource types: { }1,2, ,
RT �RT
= �
.
References [1] W.J.
Journal of Hazardous Materials, 2006, 134(1-3): 27-35
Ocean & Coastal Management, 2009, 52(9): 479-486
Remote Sensing of Environment, 2005, 95(1): 1-13
References [1] W.J.
Journal of Hazardous Materials, 2006, 134(1-3): 27-35
Ocean & Coastal Management, 2009, 52(9): 479-486
Remote Sensing of Environment, 2005, 95(1): 1-13
Online since: April 2013
Authors: Han Fu, Shu Zhong Wang, Ming Luo
Proximate analysis and ultimate analysis of materials are listed in Table 1.
Table4 Combustion property of samples Samples 1# 2# 3# 4# 5# 6# (dw/dt)max/[mg·min-1] 1.7 0.9 1.1 1.1 1.4 1.2 Tmax/[℃] 408 534 541 538 469 479 Cb/×10-6 18.2 4.5 6.5 6.0 13.3 11.5 G/×10-6 13.6 3.8 5.0 5.1 8.0 7.9 Flammability index Cb and Steady-flammability index G are shown in Table 4.The index Cb of YC and OWL are 18.167×10-6 and 4.503×10-6.
As shown in the Table 4, the maximum mass loss rate of the coal samples is 1.69mg/min.
Journal of North China Electric Power, (2007) 7(1) 9-10
Journal of Boiler Technology, (2007) 38(1) 74-78
Table4 Combustion property of samples Samples 1# 2# 3# 4# 5# 6# (dw/dt)max/[mg·min-1] 1.7 0.9 1.1 1.1 1.4 1.2 Tmax/[℃] 408 534 541 538 469 479 Cb/×10-6 18.2 4.5 6.5 6.0 13.3 11.5 G/×10-6 13.6 3.8 5.0 5.1 8.0 7.9 Flammability index Cb and Steady-flammability index G are shown in Table 4.The index Cb of YC and OWL are 18.167×10-6 and 4.503×10-6.
As shown in the Table 4, the maximum mass loss rate of the coal samples is 1.69mg/min.
Journal of North China Electric Power, (2007) 7(1) 9-10
Journal of Boiler Technology, (2007) 38(1) 74-78
Online since: April 2021
Authors: Muhammad Taufik, Susilawati Susilawati, Aris Doyan
(a)
(b)
(c)
(d)
(e)
Figure 1.
References [1] A.
Sarma, Applied Surface Science, (479), 786-795 (2019)
Hakim, Journal of Research in Science Education, 6 (1), 1-4 (2019)
Journal of Physics: Conference Series, 1397, 1-8 (2019)
References [1] A.
Sarma, Applied Surface Science, (479), 786-795 (2019)
Hakim, Journal of Research in Science Education, 6 (1), 1-4 (2019)
Journal of Physics: Conference Series, 1397, 1-8 (2019)