Studying Effect Dimensions of Design and Simulation Silicon Nanowire Filed Effect Biosensor

Article Preview

Abstract:

We investigated into report a study biosensor based on silicon into an effect on the dimensions of conductance design and simulation nanowire surface with molecular DNA for sensitivity. In the design nanowire of A biosensor with 3 layers starting with polyisilicon nanowire of radius 8 NM surrounded by a 50-nm electrode layer, and the substrate by a 300nm. COMSOL Multiphysics software used to provide interaction with molecules such as DNA and the distribution of the electrostatic potential in the narrower due to the dimensions, surface nanowire charge was computed using Poisson equation with Boltzmann statistics. In the result of the effect geometry was also studied and the different dimension yield different space charge and the surface charge at interactive site were also investigated and the study demonstrate steps wise identification of all critical parameters for (DNA) attachment with surface nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

854-858

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Hashim, Shahrul A. B Ariffin, Tijjani Adam (2012) Fabrication of Polysilicon Nanowires using Trimming Technique" Journal of Applied Sciences Research, 8(4): 2175-2186.

Google Scholar

[2] Christian Falconia, b, Giulia Mantinia, c, ArnaldoD'Amicoa, b, Zhong Lin Wangc (2009) Studying piezoelectric nanowires and nanowalls for energy harvesting, sensors and Actuators B 139 511–519.

DOI: 10.1016/j.snb.2009.02.071

Google Scholar

[3] Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C-H. Tung, Y. Fan, K. D. Buddharaju & J. Kong Anal. Chem. (2007) Silicon Nanowire Arrays for Label-Free Detection of DNA Z., 79, 3291 – 3297.

DOI: 10.1021/ac061808q

Google Scholar

[4] Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519–522.

DOI: 10.1038/nature05498

Google Scholar

[5] Cui, Y.; Wei, Q.Q.; Park, H.K.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

DOI: 10.1126/science.1062711

Google Scholar

[6] Kim, A.; Ah, C.S.; Yu, H.Y.; Yang, J.H.; Baek, I.B.; Ahn, C.G.; Park, C.W.; Jun, M.S.; Lee, S. Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 2007, doi: 10. 1063/1. 2779965.

DOI: 10.1063/1.2779965

Google Scholar

[7] DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependance G-J. Zhang, G. Zhang, J.H. Chua, R-E. Chee, E. H. Wong, A. Agarwal, K. D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian Nano Letters, Vol. 8, No. 4, (2008), 1066 – 1070.

DOI: 10.1021/nl072991l

Google Scholar

[8] Charge distribution on thin semiconducting silicon nanowires H. Chen, S. Mukherjee & N. Aluru Comput. Methods Appl. Mech. Engrg., 197, 3366-3377, (2008).

DOI: 10.1016/j.cma.2008.02.007

Google Scholar

[9] DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependance G-J. Zhang, G. Zhang, J.H. Chua, R-E. Chee, E. H. Wong, A. Agarwal, K. D. Buddharaju, N. Singh, Z. Gao, N. Balasubramanian Nano Letters, Vol. 8, No. 4, (2008), 1066 – 1070.

DOI: 10.1021/nl072991l

Google Scholar

[10] Nanowire nanosensors F. Patolsky, & C. M. Lieber Materials Today, April (2005).

Google Scholar

[11] Electrical detection of single viruses Patolsky F., Zheng G., Hayden O., Lakadayali M., Zhuang X., & Lieber C. M. PNAS, 2004, vol. 101, no. 39.

Google Scholar

[12] Nanowire-based biosensors F. Patolsky, G. Zheng, & C. M. Lieber Analytical Chemistry, July 1. (2006).

Google Scholar

[13] Nanowire Nanosensors for highly sensitive and selective detection of biological and chemical species Y. Cui, Q. Wei, H. Park, & C. M. Lieber Science (2001) 293, 1289.

DOI: 10.1126/science.1062711

Google Scholar