Engineering Research
Advanced Engineering Forum
Applied Mechanics and Materials
Engineering Chemistry
Engineering Innovations
Journal of Biomimetics, Biomaterials and Biomedical Engineering
International Journal of Engineering Research in Africa
Materials Science
Advanced Materials Research
Defect and Diffusion Forum
Diffusion Foundations and Materials Applications
Journal of Metastable and Nanocrystalline Materials
Journal of Nano Research
Key Engineering Materials
Materials Science Forum
Nano Hybrids and Composites
Solid State Phenomena
Engineering Series
Advances in Science and Technology
Construction Technologies and Architecture
Engineering Headway
Books by Keyword: Equal Channel Angular Extrusion (ECAE)
Books
Edited by:
Jing Tao Wang, Dr. Roberto B. Figueiredo and Terence Langdon
Online since: December 2010
Description: Volume is indexed by Thomson Reuters CPCI-S (WoS).
The 200 peer-reviewed articles in this “Nanomaterials by Severe Plastic Deformation” special collection are a convincing demonstration of the relevance of bulk ultrafine grained and nanostructured materials, produced by severe plastic deformation, to a wide range of researchers and engineers., The total number of articles in this edition, larger than that in the 2008 edition, shows that this community is, in fact, growing. The coverage includes all aspects of NanoSPD: Principles of SPD Processing, Microstructural Evolution and Grain Refinement, Mechanical Properties of SPD Materials, Functional and other Properties of SPD Materials, Innovation and Applications.
The 200 peer-reviewed articles in this “Nanomaterials by Severe Plastic Deformation” special collection are a convincing demonstration of the relevance of bulk ultrafine grained and nanostructured materials, produced by severe plastic deformation, to a wide range of researchers and engineers., The total number of articles in this edition, larger than that in the 2008 edition, shows that this community is, in fact, growing. The coverage includes all aspects of NanoSPD: Principles of SPD Processing, Microstructural Evolution and Grain Refinement, Mechanical Properties of SPD Materials, Functional and other Properties of SPD Materials, Innovation and Applications.
Edited by:
Luca Tomesani and Prof. Lorenzo Donati
Online since: February 2008
Description: Volume is indexed by Thomson Reuters BCI (WoS).
This collection offers a fully representative snapshot of modelling activities as applied to processes involving extrusion. It covers a wide range of topics, grouped into the categories: benchmark, keynotes, material flow and constitutive equations, microstructure, seam welds and process optimization, dies and tools.
This collection offers a fully representative snapshot of modelling activities as applied to processes involving extrusion. It covers a wide range of topics, grouped into the categories: benchmark, keynotes, material flow and constitutive equations, microstructure, seam welds and process optimization, dies and tools.
Edited by:
C. Esling, M. Humbert, R.A. Schwarzer and F. Wagner
Online since: July 2005
Description: Volume is indexed by Thomson Reuters CPCI-S (WoS).
Natural, as well as man-made, materials are often assumed to behave uniformly, exhibiting equal strength in all directions, because most of them have a polycrystalline structure. The anisotropy of the individual crystals, however, is smoothed out only in the presence of a large number of grains having a random distribution of orientations. In reality, there usually remains an anisotropy due to the existence of preferred orientations. Its magnitude depends upon the statistical distribution of grain orientations – the "crystallographic texture" or, more simply, the texture. –This governs the extremes, of the physical property of interest, which a single crystal of the material under consideration can exhibit in directional tests. Local variations in texture, as well as the arrangements and types of grain/phase boundaries, may give rise to inhomogeneous material properties. The texture also carries with it information on the history of a material’s processing, use and misuse. A knowledge of the texture is a prerequisite for all quantitative techniques of materials characterization, and is based upon the interpretation of diffraction-peak intensities. It is also necessary to model the relationships between microstructural features and physical or mechanical properties. Therefore, the texture is of great value for quality control in a wide range of industrial applications, and in basic materials research.
Natural, as well as man-made, materials are often assumed to behave uniformly, exhibiting equal strength in all directions, because most of them have a polycrystalline structure. The anisotropy of the individual crystals, however, is smoothed out only in the presence of a large number of grains having a random distribution of orientations. In reality, there usually remains an anisotropy due to the existence of preferred orientations. Its magnitude depends upon the statistical distribution of grain orientations – the "crystallographic texture" or, more simply, the texture. –This governs the extremes, of the physical property of interest, which a single crystal of the material under consideration can exhibit in directional tests. Local variations in texture, as well as the arrangements and types of grain/phase boundaries, may give rise to inhomogeneous material properties. The texture also carries with it information on the history of a material’s processing, use and misuse. A knowledge of the texture is a prerequisite for all quantitative techniques of materials characterization, and is based upon the interpretation of diffraction-peak intensities. It is also necessary to model the relationships between microstructural features and physical or mechanical properties. Therefore, the texture is of great value for quality control in a wide range of industrial applications, and in basic materials research.
Showing 1 to 3 of 3 Books