[1]
S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428 (2004) 911-918.
DOI: 10.1038/nature02498
Google Scholar
[2]
J.A. Rogers, Y. Huang, A curvy, stretchy future for electronics, Proc. Nat. Acad. Sci. 106 (2009) 10875-10876.
DOI: 10.1073/pnas.0905723106
Google Scholar
[3]
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science 327 (2010) 1603-1607.
DOI: 10.1126/science.1182383
Google Scholar
[4]
D. -H. Kim et al., Materials for stretchable electronics in bio-inspired and bio-integrated devices, MRS Bull. 37 (2012) 226-235.
Google Scholar
[5]
H.C. Ko et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature 454 (2008) 748-753.
DOI: 10.1038/nature07113
Google Scholar
[6]
I. Jung et al., Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability, Proc. Nat. Acad. Sci. 108, (2011) 1788-1793.
DOI: 10.1073/pnas.1015440108
Google Scholar
[7]
D. -H. Kim et al., Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics, Nature Mater. 9 (2010) 511-517.
Google Scholar
[8]
R. -H. Kim et al., Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics, Nature Mater. 9 (2010) 929-937.
Google Scholar
[9]
J. Viventi et al., A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology, Sci. Trans. Med. 2 (2010), 24ra22.
Google Scholar
[10]
D.H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy, Nature Mater. 10 (2011) 316-323.
Google Scholar
[11]
D. -H. Kim et al., Epidermal electronics, Science 333 (2011) 838-843.
Google Scholar
[12]
J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo, Nature Neuro. 14 (2011) 1599-1605.
DOI: 10.3410/f.13386958.14754059
Google Scholar
[13]
D. -Y. Khang et al., A stretchable form of single crystal silicon for high performance electronics on rubber substrates, Science 311 (2006) 208-212.
DOI: 10.1126/science.1121401
Google Scholar
[14]
A. Carlson et al., Transfer printing techniques for materials assembly and micro/nanodevice fabrication, Adv. Mater. (in press).
Google Scholar
[15]
M.A. Meitl et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Mater 5 (2006) 33-38.
Google Scholar
[16]
X. Feng et al., Competing fracture in kinetically controlled transfer printing, Langmuir 23 (2007) 12555-12560.
DOI: 10.1021/la701555n
Google Scholar
[17]
T.H. Kim et al., Kinetically controlled, adhesiveless transfer printing using micro-structure stamps, Appl. Phys. Lett. 94 (2009) 113502.
DOI: 10.1063/1.3099052
Google Scholar
[18]
S. Kim et al., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing, Proc. Nat. Acad. Sci. 107 (2010) 17095-17100.
DOI: 10.1073/pnas.1005828107
Google Scholar
[19]
S. Kim et al., Enhanced Adhesion with Pedestal-Shaped Elastomeric Stamps for Transfer Printing, Appl. Phys. Lett 100 (2012) 171909.
DOI: 10.1063/1.4706257
Google Scholar
[20]
S.Y. Yang et al., Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications, Adv. Mater. 24 (2012) 2117-2122.
DOI: 10.1002/adma.201104975
Google Scholar
[21]
J. Wu et al., Contact radius of stamps in reversible adhesion, Theo. Appl. Mech. Lett. 1 (2011) 011001.
Google Scholar
[22]
J. Wu et al., Mechanics of reversible adhesion, Soft Matter 7 (2011) 8657-8662.
Google Scholar
[23]
A. Carlson et al., Shear-enhanced adhesiveless transfer printing and for use in deterministic materials assembly, Appl. Phys. Lett. 98 (2011) 264104.
DOI: 10.1063/1.3605558
Google Scholar
[24]
H.Y. Cheng et al., An analytical model for shear-enhanced adhesiveless transfer printing, Mech. Res. Comm. 43 (2012) 46-49.
Google Scholar
[25]
R. Li et al., Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis, Soft Matter 8 (2012) 7122-7127.
DOI: 10.1039/c2sm25339a
Google Scholar
[26]
R. Li et al., Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing, Int. J. Fract 176 (2012) 189-194.
DOI: 10.1007/s10704-012-9744-9
Google Scholar
[27]
R. Saeidpourazar et al., Laser-driven non-contact transfer printing of prefabricated microstructures, J. MEMS (in press).
Google Scholar
[28]
A. Carlson et al., Active, programmable elastomeric surface with tunable adhesion for deterministic assembly by transfer printing, Adv. Funct. Mater. (in press).
DOI: 10.1002/adfm.201201023
Google Scholar
[29]
Y. Huang et al., Stamp collapse in soft lithography, Langmuir 21 (2005) 8058-8068.
Google Scholar
[30]
K.J. Hsia et al., Collapse of stamps for soft lithography due to interfacial adhesion, Appl. Phys. Lett. 86 (2005) 154106.
DOI: 10.1063/1.1900303
Google Scholar
[31]
W.X. Zhou et al., Mechanism for stamp collapse in soft lithography, Appl. Phys. Lett. 87 (2005) 251925.
Google Scholar
[32]
H.Q. Jiang et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Nat. Acad. Sci. 104 (1997) 15607-15612.
DOI: 10.1073/pnas.0702927104
Google Scholar
[33]
A.J. Baca et al., Semiconductor wires and ribbons for high-performance flexible electronics, Angewandte Chemie – Int. Edition 47 (2008) 5524-5542.
DOI: 10.1002/anie.200703238
Google Scholar
[34]
S.Y. Ryu et al., Lateral buckling mechanics in silicon nanowire on elastomeric substrates, Nano Lett. 9 (2009) 3214-3219.
DOI: 10.1021/nl901450q
Google Scholar
[35]
J.L. Xiao et al., Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates, Nanotech. 21 (2010) 085708.
Google Scholar
[36]
W. -M. Choi et al., Biaxially stretchable wavy, silicon nanomembranes, Nano Lett. 7 (2007) 1655-1663.
DOI: 10.1021/nl0706244
Google Scholar
[37]
D. -Y. Khang et al., Molecular scale buckling mechanics in individual, aligned single-wall carbon nanotubes on elastomeric substrates, Nano Lett. 8 (2008) 124-130.
DOI: 10.1021/nl072203s.s001
Google Scholar
[38]
J.L. Xiao et al., Mechanics of buckled carbon nanotubes on elastomeric substrate, J. Appl. Phys. 104 (2008) 033543.
Google Scholar
[39]
R.H. Kim et al., Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates, Nano Lett. 11 (2011) 3881-3886.
DOI: 10.1021/nl202000u
Google Scholar
[40]
N. Bowden et al., Spontaneous formation of ordered structures in thin film of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.
DOI: 10.1038/30193
Google Scholar
[41]
J. -H. Ahn et al., Defect tolerance in transistors that use semiconductor nanomaterials and ultrathin dielectrics, Adv. Funct. Mater. 18 (2008) 2535-2540.
DOI: 10.1002/adfm.200800176
Google Scholar
[42]
X. Feng et al., Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates, ACS Nano 5 (2011) 3326-3332.
DOI: 10.1021/nn200477q
Google Scholar
[43]
J.Y. Park et al., Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors, Nature Comm. 3 (2012) 916 doi: 10. 1038/ ncomms1929.
Google Scholar
[44]
Y.G. Sun et al., Controlled buckling of semiconductor nanoribbons for stretchable electronics, Nature Nanotech. 1 (2006) 201-207.
DOI: 10.1038/nnano.2006.131
Google Scholar
[45]
Koh et al., Edge effects in buckled thin films on elastomeric substrates, Appl. Phys. Lett. 91 (2007) 133113.
DOI: 10.1063/1.2791004
Google Scholar
[46]
H.Q. Jiang et al., Finite width effect of thin films buckling on compliant substrate: Experimental and theoretical studies, J. Mech. Phys. Solids 56 (2008) 2585-2598.
DOI: 10.1016/j.jmps.2008.03.005
Google Scholar
[47]
J.L. Xiao et al., Stretchable and compressible thin films of stiff materials on compliant wavy substrates, Appl. Phys. Lett. 93 (2008) 013109.
DOI: 10.1063/1.2955829
Google Scholar
[48]
J.L. Xiao et al., Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile, J. Appl. Mech. 77 (2010) 011003.
Google Scholar
[49]
J. Wu et al., Stretchability of encapsulated electronics, Appl. Phys. Lett. 99 (2011) 061911.
Google Scholar
[50]
D. -H. Kim et al., Ultrathin silicon circuits with strain isolation layers and mesh layouts for high performance electronics on fabric, vinyl, leather and paper, Adv. Mater. 21 (2009) 1-5.
DOI: 10.1002/adma.200900405
Google Scholar
[51]
J. Wu et al., A strain-isolation design for stretchable electronics, Acta Mech. Sinica 26 (2010) 881-888.
Google Scholar
[52]
H.Y. Cheng et al., An analytical model of strain isolation for stretchable and flexible electronics, Appl. Phys. Lett. 98 (2011) 061902.
Google Scholar
[53]
S. Kim et al., Imbricate scales as a design construct for microsystems technology, Small 8 (2012) 901-906.
Google Scholar
[54]
Y.W. Su et al., Mechanics of stretchable electronics with high fill factors, Int. J. Solids Structures (in press).
Google Scholar
[55]
J.Z. Song et al., An analytical study of two-dimensional buckling of thin films on compliant substrates, J. Appl. Phys. 103 (2008) 014303.
Google Scholar
[56]
J.Z. Song et al., Buckling of a stiff thin film on a compliant substrate in large deformation, Int. J. Solids Struct. 45 (2008) 3107-3121.
DOI: 10.1016/j.ijsolstr.2008.01.023
Google Scholar
[57]
S.D. Wang et al., Local versus global buckling of thin films on elastomeric substrates, Appl. Phys. Lett. 93 (2008) 023126.
DOI: 10.1063/1.2956402
Google Scholar
[58]
M.A. Meitl, Stress focusing for controlled fracture in MEMS structures, Appl. Phys. Lett. 90 (2007) 083110.
Google Scholar
[59]
H.Q. Jiang et al., Mechanics of precisely controlled thin film buckling on elastomeric substrate, Appl. Phys. Lett. 90 (2007) 133119.
DOI: 10.1063/1.2719027
Google Scholar
[60]
H.Q. Jiang et al., Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates, Int. J. Solids Struct. 45 (2008) 2014-(2023).
DOI: 10.1016/j.ijsolstr.2007.11.007
Google Scholar
[61]
S.I. Park et al., Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates, Adv. Funct. Mater. 18 (2008) 2673-2684.
DOI: 10.1002/adfm.200800306
Google Scholar
[62]
D. -H. Kim et al., Stretchable and foldable silicon integrated circuits, Science 320 (2008) 507-511.
Google Scholar
[63]
D. -H. Kim et al., Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects, Appl. Phys. Lett. 94 (2008) 044102.
DOI: 10.1063/1.2963364
Google Scholar
[64]
D. -H. Kim et al., Materials and non-coplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations, Proc. Nat. Acad. Sci. 105 (2008) 18675-18680.
DOI: 10.1073/pnas.0807476105
Google Scholar
[65]
D. -H. Kim et al., Optimized structural designs for stretchable silicon integrated circuits, Small 5 (2009) 2841-2847.
Google Scholar
[66]
J.Z. Song, Mechanics of non-coplanar mesh design for stretchable electronic circuits, J. Appl. Phys. 105 (2009) 123516.
Google Scholar
[67]
M. Li et al., Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics, Acta Mech. Solida Sinica 23 (2010) 592-599.
DOI: 10.1016/s0894-9166(11)60006-2
Google Scholar
[68]
J. Yoon et al., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs, " Nature Mater. 7 (2008) 907-915.
DOI: 10.1038/nmat2287
Google Scholar
[69]
A.J. Baca et al., Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs, Energy & Environ. Sci. 3 (2010) 208-211.
DOI: 10.1039/b920862c
Google Scholar
[70]
J. Lee et al., Stretchable GaAs phtovoltaics with designs that enable high areal coverage, Adv. Mater. 23 (2011) 986-991.
DOI: 10.1002/adma.201003961
Google Scholar
[71]
J. Lee et al., Stretchable semiconductor technologies with high areal coverages and strain limiting behavior: Demonstration in high efficiency dual junction GaInP/GaAs photovoltaics, Small (in press).
DOI: 10.1002/smll.201102437
Google Scholar
[72]
S.I. Park et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays, Science 325 (2009) 977-981.
DOI: 10.1126/science.1175690
Google Scholar
[73]
S.I. Park et al., Light emission characteristics and mechanics of foldable inorganic light-emitting diodes, Adv. Mater. 22 (2010) 3062-3066.
DOI: 10.1002/adma.201000591
Google Scholar
[74]
H.S. Kim et al., Unusual strategies for using InGaN grown on silicon (111) for solid state lighting, Proc. Nat. Acad. Sci. 108 (2011) 10072-10077.
DOI: 10.1073/pnas.1102650108
Google Scholar
[75]
T.I. Kim et al., High efficiency, microscale GaN light emitting diodes and their thermal properties on unusual substrates, Small 8 (2012) 1643-1649.
DOI: 10.1002/smll.201200382
Google Scholar
[76]
R. -H. Kim et al., Materials and designs for wirelessly powered implantable light emitting systems, Small (in press).
Google Scholar
[77]
C.F. Lu et al., Thermal analysis of the operation of microscale inorganic light emitting diodes, Proc. Royal Soc. A – Math., Phys. Eng. Sci. (in press).
Google Scholar
[78]
H.C. Ko et al., Curvilinear electronics formed using silicon nanomembrane circuits and elastomeric transfer elements, Small 5 (2009) 2703-2709.
Google Scholar
[79]
S.D. Wang et al., Mechanics of hemispherical electronics, Appl. Phys. Lett. 95 (2009) 181912.
Google Scholar
[80]
G. Shin et al., Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic eye cameras, Small 6 (2010) 851-856.
DOI: 10.1002/smll.200901350
Google Scholar
[81]
S.D. Wang et al., Mechanics of curvilinear electronics, Soft Matter 6 (2010) 5757-5763.
Google Scholar
[82]
M. Ying et al., Silicon nanomembranes for finger tip electronics, Nanotechnology (in press).
Google Scholar
[83]
S.D. Wang et al., Mechanics of epidermal electronics, J. Appl. Mech 79 (2012) 031022.
Google Scholar
[84]
Y.W. Su et al., Postbuckling analysis and its application to stretchable electronics, J. Mech. Phys. Solids 60 (2012) 487-508.
Google Scholar
[85]
J.Z. Song et al., Mechanics of stretchable inorganic electronic materials, J. Vacuum Sci. Tech. A27 (2009) 1107-1125, (2009).
Google Scholar
[86]
D. -H. Kim et al., Stretchable, curvilinear electronics based on inorganic materials, Adv. Mater. 22 (2010) 2108-2124.
DOI: 10.1002/adma.200902927
Google Scholar