Mechanics of Stretchable Electronics

Article Preview

Abstract:

Recent advances in mechanics and materials provide routes to integrated circuits that offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent and deformed into arbitrary, curvilinear shapes. This paper summarizes developments in this emerging field, with descriptions of application opportunities, fundamental aspects, representative devices, and particularly the effect of plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 535-536)

Pages:

25-31

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428 (2004) 911-918.

DOI: 10.1038/nature02498

Google Scholar

[2] J.A. Rogers, Y. Huang, A curvy, stretchy future for electronics, Proc. Nat. Acad. Sci. 106 (2009) 10875-10876.

DOI: 10.1073/pnas.0905723106

Google Scholar

[3] J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science 327 (2010) 1603-1607.

DOI: 10.1126/science.1182383

Google Scholar

[4] D. -H. Kim et al., Materials for stretchable electronics in bio-inspired and bio-integrated devices, MRS Bull. 37 (2012) 226-235.

Google Scholar

[5] H.C. Ko et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature 454 (2008) 748-753.

DOI: 10.1038/nature07113

Google Scholar

[6] I. Jung et al., Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability, Proc. Nat. Acad. Sci. 108, (2011) 1788-1793.

DOI: 10.1073/pnas.1015440108

Google Scholar

[7] D. -H. Kim et al., Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics, Nature Mater. 9 (2010) 511-517.

Google Scholar

[8] R. -H. Kim et al., Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics, Nature Mater. 9 (2010) 929-937.

Google Scholar

[9] J. Viventi et al., A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology, Sci. Trans. Med. 2 (2010), 24ra22.

Google Scholar

[10] D.H. Kim et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy, Nature Mater. 10 (2011) 316-323.

Google Scholar

[11] D. -H. Kim et al., Epidermal electronics, Science 333 (2011) 838-843.

Google Scholar

[12] J. Viventi et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo, Nature Neuro. 14 (2011) 1599-1605.

DOI: 10.3410/f.13386958.14754059

Google Scholar

[13] D. -Y. Khang et al., A stretchable form of single crystal silicon for high performance electronics on rubber substrates, Science 311 (2006) 208-212.

DOI: 10.1126/science.1121401

Google Scholar

[14] A. Carlson et al., Transfer printing techniques for materials assembly and micro/nanodevice fabrication, Adv. Mater. (in press).

Google Scholar

[15] M.A. Meitl et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Mater 5 (2006) 33-38.

Google Scholar

[16] X. Feng et al., Competing fracture in kinetically controlled transfer printing, Langmuir 23 (2007) 12555-12560.

DOI: 10.1021/la701555n

Google Scholar

[17] T.H. Kim et al., Kinetically controlled, adhesiveless transfer printing using micro-structure stamps, Appl. Phys. Lett. 94 (2009) 113502.

DOI: 10.1063/1.3099052

Google Scholar

[18] S. Kim et al., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing, Proc. Nat. Acad. Sci. 107 (2010) 17095-17100.

DOI: 10.1073/pnas.1005828107

Google Scholar

[19] S. Kim et al., Enhanced Adhesion with Pedestal-Shaped Elastomeric Stamps for Transfer Printing, Appl. Phys. Lett 100 (2012) 171909.

DOI: 10.1063/1.4706257

Google Scholar

[20] S.Y. Yang et al., Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications, Adv. Mater. 24 (2012) 2117-2122.

DOI: 10.1002/adma.201104975

Google Scholar

[21] J. Wu et al., Contact radius of stamps in reversible adhesion, Theo. Appl. Mech. Lett. 1 (2011) 011001.

Google Scholar

[22] J. Wu et al., Mechanics of reversible adhesion, Soft Matter 7 (2011) 8657-8662.

Google Scholar

[23] A. Carlson et al., Shear-enhanced adhesiveless transfer printing and for use in deterministic materials assembly, Appl. Phys. Lett. 98 (2011) 264104.

DOI: 10.1063/1.3605558

Google Scholar

[24] H.Y. Cheng et al., An analytical model for shear-enhanced adhesiveless transfer printing, Mech. Res. Comm. 43 (2012) 46-49.

Google Scholar

[25] R. Li et al., Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis, Soft Matter 8 (2012) 7122-7127.

DOI: 10.1039/c2sm25339a

Google Scholar

[26] R. Li et al., Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing, Int. J. Fract 176 (2012) 189-194.

DOI: 10.1007/s10704-012-9744-9

Google Scholar

[27] R. Saeidpourazar et al., Laser-driven non-contact transfer printing of prefabricated microstructures, J. MEMS (in press).

Google Scholar

[28] A. Carlson et al., Active, programmable elastomeric surface with tunable adhesion for deterministic assembly by transfer printing, Adv. Funct. Mater. (in press).

DOI: 10.1002/adfm.201201023

Google Scholar

[29] Y. Huang et al., Stamp collapse in soft lithography, Langmuir 21 (2005) 8058-8068.

Google Scholar

[30] K.J. Hsia et al., Collapse of stamps for soft lithography due to interfacial adhesion, Appl. Phys. Lett. 86 (2005) 154106.

DOI: 10.1063/1.1900303

Google Scholar

[31] W.X. Zhou et al., Mechanism for stamp collapse in soft lithography, Appl. Phys. Lett. 87 (2005) 251925.

Google Scholar

[32] H.Q. Jiang et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Nat. Acad. Sci. 104 (1997) 15607-15612.

DOI: 10.1073/pnas.0702927104

Google Scholar

[33] A.J. Baca et al., Semiconductor wires and ribbons for high-performance flexible electronics, Angewandte Chemie – Int. Edition 47 (2008) 5524-5542.

DOI: 10.1002/anie.200703238

Google Scholar

[34] S.Y. Ryu et al., Lateral buckling mechanics in silicon nanowire on elastomeric substrates, Nano Lett. 9 (2009) 3214-3219.

DOI: 10.1021/nl901450q

Google Scholar

[35] J.L. Xiao et al., Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates, Nanotech. 21 (2010) 085708.

Google Scholar

[36] W. -M. Choi et al., Biaxially stretchable wavy, silicon nanomembranes, Nano Lett. 7 (2007) 1655-1663.

DOI: 10.1021/nl0706244

Google Scholar

[37] D. -Y. Khang et al., Molecular scale buckling mechanics in individual, aligned single-wall carbon nanotubes on elastomeric substrates, Nano Lett. 8 (2008) 124-130.

DOI: 10.1021/nl072203s.s001

Google Scholar

[38] J.L. Xiao et al., Mechanics of buckled carbon nanotubes on elastomeric substrate, J. Appl. Phys. 104 (2008) 033543.

Google Scholar

[39] R.H. Kim et al., Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates, Nano Lett. 11 (2011) 3881-3886.

DOI: 10.1021/nl202000u

Google Scholar

[40] N. Bowden et al., Spontaneous formation of ordered structures in thin film of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.

DOI: 10.1038/30193

Google Scholar

[41] J. -H. Ahn et al., Defect tolerance in transistors that use semiconductor nanomaterials and ultrathin dielectrics, Adv. Funct. Mater. 18 (2008) 2535-2540.

DOI: 10.1002/adfm.200800176

Google Scholar

[42] X. Feng et al., Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates, ACS Nano 5 (2011) 3326-3332.

DOI: 10.1021/nn200477q

Google Scholar

[43] J.Y. Park et al., Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors, Nature Comm. 3 (2012) 916 doi: 10. 1038/ ncomms1929.

Google Scholar

[44] Y.G. Sun et al., Controlled buckling of semiconductor nanoribbons for stretchable electronics, Nature Nanotech. 1 (2006) 201-207.

DOI: 10.1038/nnano.2006.131

Google Scholar

[45] Koh et al., Edge effects in buckled thin films on elastomeric substrates, Appl. Phys. Lett. 91 (2007) 133113.

DOI: 10.1063/1.2791004

Google Scholar

[46] H.Q. Jiang et al., Finite width effect of thin films buckling on compliant substrate: Experimental and theoretical studies, J. Mech. Phys. Solids 56 (2008) 2585-2598.

DOI: 10.1016/j.jmps.2008.03.005

Google Scholar

[47] J.L. Xiao et al., Stretchable and compressible thin films of stiff materials on compliant wavy substrates, Appl. Phys. Lett. 93 (2008) 013109.

DOI: 10.1063/1.2955829

Google Scholar

[48] J.L. Xiao et al., Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile, J. Appl. Mech. 77 (2010) 011003.

Google Scholar

[49] J. Wu et al., Stretchability of encapsulated electronics, Appl. Phys. Lett. 99 (2011) 061911.

Google Scholar

[50] D. -H. Kim et al., Ultrathin silicon circuits with strain isolation layers and mesh layouts for high performance electronics on fabric, vinyl, leather and paper, Adv. Mater. 21 (2009) 1-5.

DOI: 10.1002/adma.200900405

Google Scholar

[51] J. Wu et al., A strain-isolation design for stretchable electronics, Acta Mech. Sinica 26 (2010) 881-888.

Google Scholar

[52] H.Y. Cheng et al., An analytical model of strain isolation for stretchable and flexible electronics, Appl. Phys. Lett. 98 (2011) 061902.

Google Scholar

[53] S. Kim et al., Imbricate scales as a design construct for microsystems technology, Small 8 (2012) 901-906.

Google Scholar

[54] Y.W. Su et al., Mechanics of stretchable electronics with high fill factors, Int. J. Solids Structures (in press).

Google Scholar

[55] J.Z. Song et al., An analytical study of two-dimensional buckling of thin films on compliant substrates, J. Appl. Phys. 103 (2008) 014303.

Google Scholar

[56] J.Z. Song et al., Buckling of a stiff thin film on a compliant substrate in large deformation, Int. J. Solids Struct. 45 (2008) 3107-3121.

DOI: 10.1016/j.ijsolstr.2008.01.023

Google Scholar

[57] S.D. Wang et al., Local versus global buckling of thin films on elastomeric substrates, Appl. Phys. Lett. 93 (2008) 023126.

DOI: 10.1063/1.2956402

Google Scholar

[58] M.A. Meitl, Stress focusing for controlled fracture in MEMS structures, Appl. Phys. Lett. 90 (2007) 083110.

Google Scholar

[59] H.Q. Jiang et al., Mechanics of precisely controlled thin film buckling on elastomeric substrate, Appl. Phys. Lett. 90 (2007) 133119.

DOI: 10.1063/1.2719027

Google Scholar

[60] H.Q. Jiang et al., Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates, Int. J. Solids Struct. 45 (2008) 2014-(2023).

DOI: 10.1016/j.ijsolstr.2007.11.007

Google Scholar

[61] S.I. Park et al., Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates, Adv. Funct. Mater. 18 (2008) 2673-2684.

DOI: 10.1002/adfm.200800306

Google Scholar

[62] D. -H. Kim et al., Stretchable and foldable silicon integrated circuits, Science 320 (2008) 507-511.

Google Scholar

[63] D. -H. Kim et al., Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects, Appl. Phys. Lett. 94 (2008) 044102.

DOI: 10.1063/1.2963364

Google Scholar

[64] D. -H. Kim et al., Materials and non-coplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations, Proc. Nat. Acad. Sci. 105 (2008) 18675-18680.

DOI: 10.1073/pnas.0807476105

Google Scholar

[65] D. -H. Kim et al., Optimized structural designs for stretchable silicon integrated circuits, Small 5 (2009) 2841-2847.

Google Scholar

[66] J.Z. Song, Mechanics of non-coplanar mesh design for stretchable electronic circuits, J. Appl. Phys. 105 (2009) 123516.

Google Scholar

[67] M. Li et al., Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics, Acta Mech. Solida Sinica 23 (2010) 592-599.

DOI: 10.1016/s0894-9166(11)60006-2

Google Scholar

[68] J. Yoon et al., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs, " Nature Mater. 7 (2008) 907-915.

DOI: 10.1038/nmat2287

Google Scholar

[69] A.J. Baca et al., Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs, Energy & Environ. Sci. 3 (2010) 208-211.

DOI: 10.1039/b920862c

Google Scholar

[70] J. Lee et al., Stretchable GaAs phtovoltaics with designs that enable high areal coverage, Adv. Mater. 23 (2011) 986-991.

DOI: 10.1002/adma.201003961

Google Scholar

[71] J. Lee et al., Stretchable semiconductor technologies with high areal coverages and strain limiting behavior: Demonstration in high efficiency dual junction GaInP/GaAs photovoltaics, Small (in press).

DOI: 10.1002/smll.201102437

Google Scholar

[72] S.I. Park et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays, Science 325 (2009) 977-981.

DOI: 10.1126/science.1175690

Google Scholar

[73] S.I. Park et al., Light emission characteristics and mechanics of foldable inorganic light-emitting diodes, Adv. Mater. 22 (2010) 3062-3066.

DOI: 10.1002/adma.201000591

Google Scholar

[74] H.S. Kim et al., Unusual strategies for using InGaN grown on silicon (111) for solid state lighting, Proc. Nat. Acad. Sci. 108 (2011) 10072-10077.

DOI: 10.1073/pnas.1102650108

Google Scholar

[75] T.I. Kim et al., High efficiency, microscale GaN light emitting diodes and their thermal properties on unusual substrates, Small 8 (2012) 1643-1649.

DOI: 10.1002/smll.201200382

Google Scholar

[76] R. -H. Kim et al., Materials and designs for wirelessly powered implantable light emitting systems, Small (in press).

Google Scholar

[77] C.F. Lu et al., Thermal analysis of the operation of microscale inorganic light emitting diodes, Proc. Royal Soc. A – Math., Phys. Eng. Sci. (in press).

Google Scholar

[78] H.C. Ko et al., Curvilinear electronics formed using silicon nanomembrane circuits and elastomeric transfer elements, Small 5 (2009) 2703-2709.

Google Scholar

[79] S.D. Wang et al., Mechanics of hemispherical electronics, Appl. Phys. Lett. 95 (2009) 181912.

Google Scholar

[80] G. Shin et al., Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic eye cameras, Small 6 (2010) 851-856.

DOI: 10.1002/smll.200901350

Google Scholar

[81] S.D. Wang et al., Mechanics of curvilinear electronics, Soft Matter 6 (2010) 5757-5763.

Google Scholar

[82] M. Ying et al., Silicon nanomembranes for finger tip electronics, Nanotechnology (in press).

Google Scholar

[83] S.D. Wang et al., Mechanics of epidermal electronics, J. Appl. Mech 79 (2012) 031022.

Google Scholar

[84] Y.W. Su et al., Postbuckling analysis and its application to stretchable electronics, J. Mech. Phys. Solids 60 (2012) 487-508.

Google Scholar

[85] J.Z. Song et al., Mechanics of stretchable inorganic electronic materials, J. Vacuum Sci. Tech. A27 (2009) 1107-1125, (2009).

Google Scholar

[86] D. -H. Kim et al., Stretchable, curvilinear electronics based on inorganic materials, Adv. Mater. 22 (2010) 2108-2124.

DOI: 10.1002/adma.200902927

Google Scholar