[1]
M.J. Hanus and A.T. Harris, Nanotechnology innovations for the construction industry, Progress in Materials Science 58 (2013) 1056-1102.
DOI: 10.1016/j.pmatsci.2013.04.001
Google Scholar
[2]
M.R.P. Rodrigues and O.P. Ferreira, Mortar with rubber particles obtained from the recycling of scrap tires (in Portuguese), in 3rd Portuguese Congress of Construction Mortars, Lisbon, (2010).
Google Scholar
[3]
A.A. Brás, M. Leal and P. Faria, Mortars with improved thermal behavior with sustainable materials (in Portuguese), in 2nd Conference - Sustainable Construction and Rehabilitation of Buildings in Lusophone Space, FCT UNL, (2012).
Google Scholar
[4]
J.A. Canova, R. Bergamasco and G. Neto, Comparative study between two types of render with the addition of rubber powder from scrap tires (in Portuguese), in VIII Brazilian Symposium on Technology of Mortar, Curitiba, (2009).
Google Scholar
[5]
L. Dias, A. Paiva and J. Vieira, Reinforcement of renders with sisal fibers (in Portuguese), in 3rd Portuguese Congress of Construction Mortars, Lisbon, (2010).
Google Scholar
[6]
C.E. Carbone, H. Santos, R.C. Romano and R. G Pileggi, Effect of adding latex in renders (in Portuguese), in IX Brazilian Symposium on Technology of Mortar, Belo Horizonte, (2011).
Google Scholar
[7]
M. Konsta-Gdoutos, Z. Metaxa and S. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites, Cement and Concrete Composites 32 (2) (2010) 110-115.
DOI: 10.1016/j.cemconcomp.2009.10.007
Google Scholar
[8]
A. Shekari and M. Razzaghi, Influence of nano particles on durability and mechanical properties of high performance concrete, Procedia Engineering 14 (2011) 3036-3041.
DOI: 10.1016/j.proeng.2011.07.382
Google Scholar
[9]
Th. Stahl, S. Brunner, M. Zimmermann and K. Ghazi Wakili, Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications, Energy and Buildings 44 (2012) 114-117.
DOI: 10.1016/j.enbuild.2011.09.041
Google Scholar
[10]
A. Sdrmomtazi, A. Fasihi, F. Balalaei and A.K. Haghi, Investigation of mechanical and physical properties of mortars containing silica fume and nano-SiO2, The Third International Conference on Concrete and Development, Building and Housing Research Center (2009).
Google Scholar
[11]
EN13055-1: Lightweight aggregates - Part 1: Lightweight aggregates for concrete, mortar rand grout. European Committee for Standardization CEN, Brussels, (2002).
DOI: 10.3403/02575612
Google Scholar
[12]
NP EN206-1: Concrete - Part 1: Specification, performance, production and conformity (in Portuguese). Portuguese Institute for Quality IPQ, Lisbon, (2005).
Google Scholar
[13]
J.A. Bogas, Characterization of structural concrete with lightweight aggregates of expanded clay (in Portuguese), PhD Dissertation in Civil Engineering, Instituto Superior Técnico, (2011).
Google Scholar
[14]
M.L. Torres and P.A. García-Ruiz, Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption, Cement and Concrete Composites 31 (2009) 114-119.
DOI: 10.1016/j.cemconcomp.2008.11.003
Google Scholar
[15]
D. Frade, J. Gonçalves, S. Nascimento and A. Sequeira, Render with thermal properties (in Portuguese), in 3rd Portuguese Congress of Construction Mortars, Lisbon, (2010).
Google Scholar
[16]
EuroLightConR1: Definitions and International Consensus Report. European Union - Brite EuRam III, BE96-3942/R1, (1988).
Google Scholar
[17]
M.A. Aegerter, N. Leventis and M.M. Koebel, Aerogels handbook (Eds. ), Springer Science + Business Media, New York, (2011).
Google Scholar
[18]
E. M. Kalhori, K. Yetilmezsoyb, N. Uygurc, M. Zarrabia and R. Shmeis, Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA), Applied Surface Science 287 (2013) 428-442.
DOI: 10.1016/j.apsusc.2013.09.175
Google Scholar
[19]
R. Bartolini, S. Filippozzib, E. Princib, C. Schenonea and S. Vicini, Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin, Applied Clay Science 48 (2010) 460-465.
DOI: 10.1016/j.clay.2010.02.007
Google Scholar
[20]
A. Ferreira, J. de Brito and F. Branco, Relative performance of mortar with expanded clay in the execution of shape layers (in Portuguese), in 2º Portuguese Congress of Construction Mortars, APFAC, Lisbon, (2007).
Google Scholar
[21]
L.M. Ilharco, A. Fidalgo, J. P Farinha, J. M Gaspar Martinho and M.E. Rosa, Nanostructured silica/polymer subcritical aerogels, Journal of Materials Chemistry 19 (2007) 2195-2198.
DOI: 10.1039/b703631k
Google Scholar
[22]
L. Gil, Cork as a building material - technical manual, APCOR - Portuguese Cork Association, (2007).
Google Scholar
[23]
L. Gil, Cork - Production technology and application (in Portuguese), Ed. INETI, Lisbon, (1998).
Google Scholar
[24]
O. Castro, J. Silva, T. Devezas, A. Silva and L. Gil, Cork agglomerates as an ideal core material in lightweight structures, Materials and Design 31 (2010) 425-432.
DOI: 10.1016/j.matdes.2009.05.039
Google Scholar
[25]
A. Brás, M. Leal and P. Faria, Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance, Construction and Buildings Materials 49 (2013) 315-327.
DOI: 10.1016/j.conbuildmat.2013.08.006
Google Scholar
[26]
P. Nóvoa, M. Ribeiro, A. Ferreira and A. Marques, Mechanical characterization of lightweight polymer mortar modified with cork granulates, Composites Science and Technology 64 (2004) 2197-2205.
DOI: 10.1016/j.compscitech.2004.03.006
Google Scholar
[27]
D. Panesar and B. Shindman, The mechanical, transport and thermal properties of mortar and concrete containing waste cork, Cement & Concrete Composites 34 (2012) 982-992.
DOI: 10.1016/j.cemconcomp.2012.06.003
Google Scholar
[28]
V.P. Freitas and P. Pinto, Vapour permeability of construction materials (in Portuguese) - Internal condensations. Technical Information NIT 002 - LFC 1998, Laboratório de Física das Construções, Porto, (1999).
Google Scholar
[29]
NP EN 1097-3: 2002: Ensaios das propriedades mecânicas e físicas dos agregados - Parte 3: Determinação da baridade e do volume de vazios. (Ed. 2). Instituto Português da Qualidade, Lisboa, (2002).
Google Scholar
[30]
EN 1015-11: 1999 (Ed. 1): Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. Comité Européen de Normalisation, Brussels, (1999).
DOI: 10.3403/01905442
Google Scholar
[31]
EN 1015-2: 1998: Methods of test for mortar for masonry - Part 2: Bulk sampling of mortars and preparation of test mortars. Comité Européen de Normalisation, Brussels, (1998).
DOI: 10.3403/01541476
Google Scholar
[32]
EN 1015-18: Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. Comité Européen de Normalisation, Brussels, (2002).
DOI: 10.3403/02720093u
Google Scholar
[33]
G. Cultrone, E. Sebastián and M. Ortega Huertas, Durability of masonry systems: A laboratory study, Construction and Building Materials 21 (2007) 40-51.
DOI: 10.1016/j.conbuildmat.2005.07.008
Google Scholar
[34]
I. Flores-Colen, Methodology for assessing the performance of facades service from the perspective of predictive maintenance (in Portuguese). PhD Dissertation in Civil Engineering, Instituto Superior Técnico, (2009).
Google Scholar
[35]
EN 1015-19: Methods of test for mortar for masonry - Part 19: Determination of water vapour permeability of hardened rendering and plastering mortars. Comité Européen de Normalisation, Brussels, (2004).
DOI: 10.3403/01541425
Google Scholar
[36]
NP EN 1936: Natural stone test methods. Determination of real density and apparent density, and of total and open porosity (in Portuguese). Portuguese Institute for Quality, Lisbon, (2008).
DOI: 10.3403/30149240
Google Scholar
[37]
EN 1015-10: Methods of test for masonry - Part 10: Determination of dry bulk density of hardened mortar. Comité Européen de Normalisation, Brussels, (1999).
DOI: 10.3403/01905430
Google Scholar
[38]
IUPAC guidelines for Reporting Physisorption Data for Gas/Solid Systems, Pure Appl. Chem. 57 (1985) 603-619.
Google Scholar
[39]
S.J. Gregg and K.S.W. Sing, Adsorption, surface area and porosity, Academic Press, London, (1982).
Google Scholar
[40]
P.A. Webb, C. Orr, Analytical methods in fine particle technology, Micrometrics Instrument Corp: USA, (1997).
Google Scholar
[41]
EN 998-1: Specification for mortar for masonry - Part 1: Rendering and plastering mortar. Comité Européen de Normalisation, Brussels, (2010).
DOI: 10.3403/30291085
Google Scholar