[1]
S. Janbuala, U. Kitthawee, M. Aermbua, Effect of Rice Husk Ash to Mechanical Properties of Clay Bricks, Adv. Mater. Res. 770 ( 2013) 50-53.
DOI: 10.4028/www.scientific.net/amr.770.50
Google Scholar
[2]
A.A. Kadir, A. Mohajerani, F. Roddick, J. Buckeridge, Density, strength, thermal conductivity and leachate characteristics of light-weight fired clay bricks incorporating cigarette butts, World Acad. Sci., Eng. Technol. 53 (2010) 1035-40.
DOI: 10.4028/www.scientific.net/amr.535-537.1723
Google Scholar
[3]
C. Bories, M. -E. Borredon, E. Vedrenne, G. Vilarem, Development of eco-friendly porous fired clay bricks using pore-forming agents: A review, J. Environ. Manage. 143 (2014) 186-196.
DOI: 10.1016/j.jenvman.2014.05.006
Google Scholar
[4]
I. Demir, Effect of organic residues addition on the technological properties of clay bricks, Waste Manage. 28 (2008) 622-627.
DOI: 10.1016/j.wasman.2007.03.019
Google Scholar
[5]
Y. Xu, C. Yan, B. Xu, X. Ruan, Z. Wei, The use of urban river sediments as a primary raw material in the production of highly insulating brick, Ceram. Int. 40 (2014) 8833-8840.
DOI: 10.1016/j.ceramint.2014.01.105
Google Scholar
[6]
M. Sutcu, S. Akkurt, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceram. Int. 35, ( 2009) 2625-2631.
DOI: 10.1016/j.ceramint.2009.02.027
Google Scholar
[7]
K.G. Mansaray, A.E. Ghaly, Agglomeration characteristics of silica sand-rice husk ash mixtures at elevated temperatures, Energy Sources, Part A: Recov, Utilization, Environ. Eff. 20 (1998) 631-52.
DOI: 10.1080/00908319808970083
Google Scholar
[8]
Thailand Industrial Standard Institute, Thai industrial standard of lightweight brick TISI 2601-2556.
Google Scholar
[9]
A.M. Musthafa, K. Janaki, G. Velraj, Microscopy, porosimetry and chemicalanalysis to estimate the firing temperature of some archaeological potteryshreds from India, Microchem J. 95(2010) 311-314.
DOI: 10.1016/j.microc.2010.01.006
Google Scholar
[10]
P.T. Williams, N. Nugranad, Comparison of products from the pyrolysis andcatalytic pyrolysis of rice husk. Energy. 25 (2000) 493-513.
DOI: 10.1016/s0360-5442(00)00009-8
Google Scholar
[11]
S. Yariv, The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl. Clay Sci. 24 (2003) 225-236.
DOI: 10.1016/j.clay.2003.04.002
Google Scholar
[12]
O. J. Ijabo, and I. O. Agbede, Suitability of techniques for analyzing particle size of rice husk ash (RHA) from sieve analysis data, Am. J. Sci. Ind. Res. 2 (2011) 652-659.
DOI: 10.5251/ajsir.2011.2.4.652.659
Google Scholar
[13]
K. -Y. Chiang, P. -H. Chou, C. -R. Hua, K. -L. Chien, Chris Cheeseman, Lightweight bricks manufactured from water treatment sludge and rice husks, J. Hazard. Mater. 171 (2009) 76-82.
DOI: 10.1016/j.jhazmat.2009.05.144
Google Scholar
[14]
X. Wang, Y. Jin, Z. Wang, and Y. Nie, Development of lightweight aggregate from dry sewage sludge, Waste Manage. 29 (2009) 1330-1335.
DOI: 10.1016/j.wasman.2008.09.006
Google Scholar