[1]
T. P. Herbell and A. J. Eckel, Ceramic Matrix Composites for Rocket Engine Turbine Applications,, Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, vol. 115, pp.64-69, Jan (1993).
DOI: 10.1115/1.2906687
Google Scholar
[2]
R. R. Naslain, SiC-matrix composites: Nonbrittle ceramics for thermo-structural application,, International Journal of Applied Ceramic Technology, vol. 2, pp.75-84, (2005).
DOI: 10.1111/j.1744-7402.2005.02009.x
Google Scholar
[3]
F. Christin, CMC Materials for Space and Aeronautical Applications,, in Ceramic Matrix Composites, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp.327-351.
DOI: 10.1002/9783527622412.ch14
Google Scholar
[4]
A. Kohyama, CMC for Nuclear Applications,, in Ceramic Matrix Composites, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp.353-384.
DOI: 10.1002/9783527622412.ch15
Google Scholar
[5]
T. Behrendt, S. Hackemann, P. Mechnich, Y. Shi, S. Hönig, S. Hofmann, et al., Development and test of oxide/oxide cmc combustor liner demonstrators for aero engines,, ASME 2016 Turbo Expo: Turbine Technical Conference and Exposition, (2016).
DOI: 10.1115/gt2016-57323
Google Scholar
[6]
A. A. Griffith, The Phenomena of Rupture and Flow in Solids,, Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, vol. 221, pp.163-198, (1921).
DOI: 10.1098/rsta.1921.0006
Google Scholar
[7]
G. R. Irwin, Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys,, presented at the Proceedings of the Sagamore Research Conference, (1956).
DOI: 10.21236/ad0099305
Google Scholar
[8]
J. B. Quinn and G. D. Quinn, A practical and systematic review of Weibull statistics for reporting strengths of dental materials,, Dent Mater, vol. 26, pp.135-47, Feb (2010).
DOI: 10.1016/j.dental.2009.09.006
Google Scholar
[9]
S. Nohut, Influence of sample size on strength distribution of advanced ceramics,, Ceramics International, vol. 40, pp.4285-4295, (2013).
DOI: 10.1016/j.ceramint.2013.08.093
Google Scholar
[10]
C. K. Seal and A. H. Sherry, Weibull distribution of brittle failures in the transition region,, Procedia Structural Integrity, vol. 2, pp.1668-1675, (2016).
DOI: 10.1016/j.prostr.2016.06.211
Google Scholar
[11]
C. Lu, R. Danzer, and F. D. Fischer, Fracture statistics of brittle materials: Weibull or normal distribution,, Physical Review, vol. 65, p.067102, Jun (2002).
DOI: 10.1103/physreve.65.067102
Google Scholar
[12]
B. Basu, D. Tiwari, D. Kundu, and R. Prasad, Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?,, Ceramics International, vol. 35, pp.237-246, (2009).
DOI: 10.1016/j.ceramint.2007.10.003
Google Scholar
[13]
M. K. Cattell and K. A. Kibble, Determination of the relationship between strength and test method for glass fibre epoxy composite coupons using Weibull analysis,, Materials & Design, vol. 22, pp.245-250, (2001).
DOI: 10.1016/s0261-3069(00)00096-0
Google Scholar
[14]
V. Calard and J. Lamon, A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites—part I: experimental investigation of 2D woven SiC/SiC composites,, Composites Science and Technology, vol. 62, pp.385-393, (2002).
DOI: 10.1016/s0266-3538(01)00224-x
Google Scholar
[15]
F. H. Gern and R. Kochendörfer, Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation,, Composites Part A: Applied Science and Manufacturing, vol. 28, pp.355-364, (1997).
DOI: 10.1016/s1359-835x(96)00135-2
Google Scholar
[16]
DIN EN 1389: Advanced technical ceramics - Ceramic composites - Physical properties - Determination of density and apparent porosity,, (2004).
DOI: 10.3403/00345631u
Google Scholar
[17]
DIN EN 658-1: Advanced technical ceramics - Mechanical properties of ceramic composites at room temperature - Part 1: Determination of tensile properties,, (1999).
DOI: 10.3403/00313008u
Google Scholar
[18]
DIN EN 658-3: Advanced technical ceramics - Mechanical properties of ceramic composites at room temperature - Part 3: Determination of flexural strength,, (2003).
DOI: 10.3403/02648093
Google Scholar
[19]
DIN EN 658-2: Advanced technical ceramics - Mechanical properties of ceramic composites at room temperature - Part 2: Determination of compression properties,, (2003).
DOI: 10.3403/02768301
Google Scholar
[20]
R. A. Brualdi, Introductory Combinatorics, Fifth Edition: Pearson, (2008).
Google Scholar
[21]
S. Salem and A. Salem, Reliability and fracture statistics of highly vitrified ceramics: Effect of technical factors on strength distribution,, Construction and Building Materials, vol. 101, pp.1097-1104, (2015).
DOI: 10.1016/j.conbuildmat.2015.10.132
Google Scholar
[22]
N. M. Razali and Y. B. Wah, Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests,, Jornal of Statistic Modeling and Analytics, vol. 2, pp.21-33, (2011).
Google Scholar
[23]
P. O`Connor and A. Kleyner, Appendix 3: Kolmogorov–Smirnov Tables,, in Practical Reliability Engineering, 5th Edition, ed: Wiley, (2012).
Google Scholar
[24]
L. Jäntschi and S. D. Bolboacă, Computation of Probability Associated with Anderson–Darling Statistic,, Mathematics vol. 6, pp.1-17, (2018).
DOI: 10.3390/math6060088
Google Scholar