[1]
Ionescu, M. I., Zhang, Y., Li, R., Abou-Rachid, H., Sun, X., Appl. Surf. Sci., 258 (10) (2012), p.4563–4568,.
DOI: 10.1016/j.apsusc.2012.01.028
Google Scholar
[2]
Charlier, J.-C., Blasé, X., Roche, S., Rev. Mod. Phys., 79 (2) (2007), p.677–732,.
DOI: 10.1103/RevModPhys.79.677
Google Scholar
[3]
Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chem. Rev., 106 (3) (2006), p.1105−1136,.
DOI: 10.1021/cr050569o
Google Scholar
[4]
Baughman, R. H., Zakhidov, A. A., de Heer, W. A., Science, 297 (5582) (2002), pp.787-792,.
DOI: 10.1126/science.1060928
Google Scholar
[5]
Dresselhaus, M. S., Dresselhaus, G., Avouris, P., Carbon Nanotubes: Synthesis, Properties and Applications, 1st ed., Springer-Verlag Berlin Heidelberg (2001),.
DOI: 10.1007/3-540-39947-X
Google Scholar
[6]
Li, C., Chou, T.-W., Compos. Sci. Technol., 63 (11) (2003), p.1517–1524,.
DOI: 10.1016/S0266-3538(03)00072-1
Google Scholar
[7]
Lu, J. P., Phys. Rev. Lett., 79 (7) (1997), pp.1297-1300,.
DOI: 10.1103/PhysRevLett.79.1297
Google Scholar
[8]
Sobolkina, A., Mechtcherine V., Khavrus, V., Maier, D., Mende, M., Ritschel, M. et al., Cem. Concr. Compos., 34 (10) (2012), p.1104–1113,.
DOI: 10.1016/j.cemconcomp.2012.07.008
Google Scholar
[9]
Boncel, S., Pattinson, S. W., Geiser, V., Shaffer, M. S. P., Koziol, K. K. K., Beilstein J. Nanotechnol., 5 (2014), p.219–233,.
DOI: 10.3762/bjnano.5.24
Google Scholar
[10]
Fuge, R., Liebscher, M., Schröfl, C., Oswald, S., Leonhardt, A., Büchner, B. et al., Diamond Relat. Mater., 66 (2016), pp.126-134,.
DOI: 10.1016/j.diamond.2016.03.026
Google Scholar
[11]
Sharifi, T., Nitze, F., Barzegar, H. R., Tai, C.-W., Mazurkiewicz, M., Malolepszy, A. et al., Carbon, 50 (10) (2012), pp.3535-3541,.
DOI: 10.1016/j.carbon.2012.03.022
Google Scholar
[12]
Ewels, C. P., Glerup, M., J. Nanosci. Nanotechnol., 5 (9) (2005), p.1345–1365,.
DOI: 10.1166/jnn.2005.304
Google Scholar
[13]
Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., López-Urías, F. et al., ACSnano, 2 (3) (2008), p.441–448,.
DOI: 10.1021/nn700330w
Google Scholar
[14]
Nxumalo, E. N., Coville, N. J., Materials, 3 (3) (2010), pp.2141-2171,.
DOI: 10.3390/ma3032141
Google Scholar
[15]
Sobolkina, A., Mechtcherine, V., Bellmann, C., Khavrus, V., Oswald, S., Hampel, S. et al., J. Colloid Interface Sci., 413 (2014), p.43–53,.
DOI: 10.1016/j.jcis.2013.09.033
Google Scholar
[16]
Zhao, J., Lai, H., Lyu, Z., Jiang, Y., Xie, K., Wang, X. et al., Adv. Mater., 27 (23) (2015), p.3541–3545,.
DOI: 10.1002/adma.201500945
Google Scholar
[17]
Ci, S., Wen, Z., Chen, J., He, Z., Electrochem. Commun., 14 (1) (2012), p.71–74,.
DOI: 10.1016/j.elecom.2011.11.006
Google Scholar
[18]
Chetty, R., Kundu, S., Xia, W., Bron, M., Schuhmann, W., Chirila, V. et al., Electrochimica Acta, 54 (17) (2009), p.4208–4215,.
DOI: 10.1016/j.electacta.2009.02.073
Google Scholar
[19]
Barreiro, A., Kramberger, C., Ruemmeli, M. H., Grueneis, A., Grimm, D., Hampel, S., Gemming, T., Buechner, B., Bachtold, A., Pichler, T., Carbon, 45 (2007), pp.55-61.
DOI: 10.1016/j.carbon.2006.08.013
Google Scholar
[20]
Panzer, M. A., Zhang G., Mann D., Hu X., Pop E., Dai H., Goodson K. E., ASME. Journal of Heat Transfer, 130 (5) (2008) 052401-9.
Google Scholar
[21]
Shahzad, M. I., Giorcelli, M., Perrone, D., Virga, A., Shazhad, N., Jagdale, P., Cocuzza, M., Tagliaferro, A., Journal of Physics: Conference Series 439 (2013) 012008.
DOI: 10.1088/1742-6596/439/1/012008
Google Scholar
[22]
Zhao, Y., Chu, R.-S., Grigoropoulos, C. P., Dubon, O. D., Majumdar, A., Journal of Heat Transfer 138 (9) (2016), 7 pages.
Google Scholar
[23]
Le Khanh, H., Divay, L., Ni, Y., Le Barny, P., Leveugle, E., Chastaing, E., Wyczisk, F., Ziaei, A., Volz, S., Bai, J., Proceedings of the 18th International Workshop on THERMal INvestigation of ICs and Systems, (2012), pp.1-4.
DOI: 10.1109/therminic.2013.6675198
Google Scholar
[24]
Vorobyeva, E. A., Chechenin, N. G., Makarenko, I. V., Kepman, A. V., Journal of Composite Science 1 (2017) 6.
Google Scholar
[25]
Wang, H., Li X., Ma, J., Li G., Hu, T., Composites: Part A 43 (2012), pp.317-324.
Google Scholar
[26]
Yamanaka, S., Gonda, R., Kawasaki, A., Sakamoto, H., Mekuchi, Y., Kuno, M., Tsukada, T., Materials Transactions, 48 (9) (2007), pp.2506-2512.
DOI: 10.2320/matertrans.mra2007084
Google Scholar
[27]
Kim, K.T., Ha, G.H., Eckert, J., J. Alloys Compd. 509 (2011), p.412–415.
Google Scholar
[28]
Babu, R. V., Kanagaraj, S., J. Mater. Process. Technol. 258 (2018), pp.296-309.
Google Scholar
[29]
Sule, R., Olubambi, P.A., Sigalas, I., Asante, J.K.O., Garrett, J.C., Roos, W.D., Synth. Met. 202 (2015), p.123–132.
Google Scholar
[30]
Vallet, G.-M., Dunand, M., Silvain, J.-F., Universal Journal of Materials Science 3(4) (2015), pp.55-61.
Google Scholar
[31]
Weidmueller, H., Weissgaerber, T., Hutsch, T., Huenert, R., Schmitt, T., Mauthner, K., Schulz-Harder, S., Journal of Korean Powder Metallurgy Institute, 13 (5) (2006).
DOI: 10.4150/kpmi.2006.13.5.321
Google Scholar
[32]
Weidmueller, H., Weissgaerber, T., Hutsch, T., Huenert, R., Schmitt, T., Mauthner, K., Schulz-Harder, S., Materials Science Forum, 534-536 (2007), pp.853-856.
DOI: 10.4028/www.scientific.net/msf.534-536.853
Google Scholar
[33]
Hutsch, T., Delinsky, W., Weißgärber, T., Leonhardt, A., Kieback, B., Proceedings International Conference on Composites/Nano Engineering (ICCE 22), Malta, 13.-19.07.(2014).
Google Scholar
[34]
Hutsch, T., Riesselmann, J., Walther, G., Weißgärber, T., Kieback, B., Brieß, K., Proceedings Euro PM 2018 Powder Metallurgy Congress & Exhibition, Bilbao, Spain, October 14-18 (2018).
Google Scholar
[35]
Park, K., Jung, D., Int. J. Heat Mass Transfer, 50 (21-22) (2007), pp.4499-4502,.
DOI: 10.1016/j.ijheatmasstransfer.2007.03.012
Google Scholar
[36]
Park, K., Jung, D., Energy and Buildings, 39 (9) (2007), pp.1061-1064,.
DOI: 10.1016/j.enbuild.2006.12.001
Google Scholar
[37]
Ujereh, S., Fisher, T., Mudawar, I., Int. J. Heat Mass Transfer, 50 (19-20) (2007), pp.4023-4038,.
DOI: 10.1016/j.ijheatmasstransfer.2007.01.030
Google Scholar
[38]
Lee, C.Y., Bhuiya, M.M.H., Kim, K.J., Int. J. Heat Mass Transfer, 53 (19-20) (2010), pp.4274-4279,.
DOI: 10.1016/j.ijheatmasstransfer.2010.05.054
Google Scholar
[39]
Kim, S.H., Lee, G.C., Kang, J.Y., Moriyama, K., Kim, M.H., Park, H.S., Int. J. Heat Mass Transfer, 91 (2015), pp.1140-1147.
DOI: 10.1016/j.ijheatmasstransfer.2015.07.120
Google Scholar
[40]
Shojaeian, M., Kosar, A., Exp. Therm Fluid Sci., 63 (2015), pp.45-73,.
DOI: 10.1016/j.expthermflusci.2014.12.016
Google Scholar
[41]
Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., Ahn, H.S., Exp. Therm Fluid Sci., 66 (2015), pp.173-196,.
DOI: 10.1016/j.expthermflusci.2015.03.023
Google Scholar
[42]
Quan, X., Dong, L., Cheng, P., Int. J. Heat Mass Transfer, 76 (2017), pp.452-458,.
DOI: 10.1016/j.ijheatmasstransfer.2014.04.037
Google Scholar
[43]
Lu, S., Yao, Z., Hao, P., Fu, C., Sci. China Phys. Mech. Astron., 53 (7) (2010), pp.1298-1305,.
DOI: 10.1007/s11433-010-4035-9
Google Scholar
[44]
Ming, Z., Jian, L., Chunxia, W., Xiaokang, Z., Lan, C., Soft Matter, 7 (9) (2011), pp.4391-4396,.
DOI: 10.1039/C0SM01426E
Google Scholar