Heat Exchange Structures Based on Copper/CNT Composite

Article Preview

Abstract:

In this study different types of multi-walled carbon nanotubes (MWCNT) were produced by the fixed bed and aerosol chemical vapor deposition (CVD) method. Nanocomposite materials were prepared by incorporation of different MWCNTs in copper matrix using powder metallurgy methods. By using hot pressing in combination with hot extrusion, the orientation of the carbon reinforcement was tuned from 3D to 1D alignment. After a selective etching process the carbon reinforcement is partially free-standing at the composite surface, but still embedded in the metal matrix. The engineered surface acts almost like a black body. The spectral evaluation of the surface functionalization will be shown for wavelengths from 200 nm to 20 µm. These results are compared to bulk copper. The free-standing MWCNT also behave like fins/pins in heat exchanger structures or surface enhancement in pool boiling. The experimental setup will be explained and the measurement described for pure copper. The theoretical heat transfer coefficient of the engineered surface is calculated depending on diameter and length of the free-standing MWCNTs. The results are compared to bulk copper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-114

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ionescu, M. I., Zhang, Y., Li, R., Abou-Rachid, H., Sun, X., Appl. Surf. Sci., 258 (10) (2012), p.4563–4568,.

DOI: 10.1016/j.apsusc.2012.01.028

Google Scholar

[2] Charlier, J.-C., Blasé, X., Roche, S., Rev. Mod. Phys., 79 (2) (2007), p.677–732,.

DOI: 10.1103/RevModPhys.79.677

Google Scholar

[3] Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chem. Rev., 106 (3) (2006), p.1105−1136,.

DOI: 10.1021/cr050569o

Google Scholar

[4] Baughman, R. H., Zakhidov, A. A., de Heer, W. A., Science, 297 (5582) (2002), pp.787-792,.

DOI: 10.1126/science.1060928

Google Scholar

[5] Dresselhaus, M. S., Dresselhaus, G., Avouris, P., Carbon Nanotubes: Synthesis, Properties and Applications, 1st ed., Springer-Verlag Berlin Heidelberg (2001),.

DOI: 10.1007/3-540-39947-X

Google Scholar

[6] Li, C., Chou, T.-W., Compos. Sci. Technol., 63 (11) (2003), p.1517–1524,.

DOI: 10.1016/S0266-3538(03)00072-1

Google Scholar

[7] Lu, J. P., Phys. Rev. Lett., 79 (7) (1997), pp.1297-1300,.

DOI: 10.1103/PhysRevLett.79.1297

Google Scholar

[8] Sobolkina, A., Mechtcherine V., Khavrus, V., Maier, D., Mende, M., Ritschel, M. et al., Cem. Concr. Compos., 34 (10) (2012), p.1104–1113,.

DOI: 10.1016/j.cemconcomp.2012.07.008

Google Scholar

[9] Boncel, S., Pattinson, S. W., Geiser, V., Shaffer, M. S. P., Koziol, K. K. K., Beilstein J. Nanotechnol., 5 (2014), p.219–233,.

DOI: 10.3762/bjnano.5.24

Google Scholar

[10] Fuge, R., Liebscher, M., Schröfl, C., Oswald, S., Leonhardt, A., Büchner, B. et al., Diamond Relat. Mater., 66 (2016), pp.126-134,.

DOI: 10.1016/j.diamond.2016.03.026

Google Scholar

[11] Sharifi, T., Nitze, F., Barzegar, H. R., Tai, C.-W., Mazurkiewicz, M., Malolepszy, A. et al., Carbon, 50 (10) (2012), pp.3535-3541,.

DOI: 10.1016/j.carbon.2012.03.022

Google Scholar

[12] Ewels, C. P., Glerup, M., J. Nanosci. Nanotechnol., 5 (9) (2005), p.1345–1365,.

DOI: 10.1166/jnn.2005.304

Google Scholar

[13] Cruz-Silva, E., Cullen, D. A., Gu, L., Romo-Herrera, J. M., Muñoz-Sandoval, E., López-Urías, F. et al., ACSnano, 2 (3) (2008), p.441–448,.

DOI: 10.1021/nn700330w

Google Scholar

[14] Nxumalo, E. N., Coville, N. J., Materials, 3 (3) (2010), pp.2141-2171,.

DOI: 10.3390/ma3032141

Google Scholar

[15] Sobolkina, A., Mechtcherine, V., Bellmann, C., Khavrus, V., Oswald, S., Hampel, S. et al., J. Colloid Interface Sci., 413 (2014), p.43–53,.

DOI: 10.1016/j.jcis.2013.09.033

Google Scholar

[16] Zhao, J., Lai, H., Lyu, Z., Jiang, Y., Xie, K., Wang, X. et al., Adv. Mater., 27 (23) (2015), p.3541–3545,.

DOI: 10.1002/adma.201500945

Google Scholar

[17] Ci, S., Wen, Z., Chen, J., He, Z., Electrochem. Commun., 14 (1) (2012), p.71–74,.

DOI: 10.1016/j.elecom.2011.11.006

Google Scholar

[18] Chetty, R., Kundu, S., Xia, W., Bron, M., Schuhmann, W., Chirila, V. et al., Electrochimica Acta, 54 (17) (2009), p.4208–4215,.

DOI: 10.1016/j.electacta.2009.02.073

Google Scholar

[19] Barreiro, A., Kramberger, C., Ruemmeli, M. H., Grueneis, A., Grimm, D., Hampel, S., Gemming, T., Buechner, B., Bachtold, A., Pichler, T., Carbon, 45 (2007), pp.55-61.

DOI: 10.1016/j.carbon.2006.08.013

Google Scholar

[20] Panzer, M. A., Zhang G., Mann D., Hu X., Pop E., Dai H., Goodson K. E., ASME. Journal of Heat Transfer, 130 (5) (2008) 052401-9.

Google Scholar

[21] Shahzad, M. I., Giorcelli, M., Perrone, D., Virga, A., Shazhad, N., Jagdale, P., Cocuzza, M., Tagliaferro, A., Journal of Physics: Conference Series 439 (2013) 012008.

DOI: 10.1088/1742-6596/439/1/012008

Google Scholar

[22] Zhao, Y., Chu, R.-S., Grigoropoulos, C. P., Dubon, O. D., Majumdar, A., Journal of Heat Transfer 138 (9) (2016), 7 pages.

Google Scholar

[23] Le Khanh, H., Divay, L., Ni, Y., Le Barny, P., Leveugle, E., Chastaing, E., Wyczisk, F., Ziaei, A., Volz, S., Bai, J., Proceedings of the 18th International Workshop on THERMal INvestigation of ICs and Systems, (2012), pp.1-4.

DOI: 10.1109/therminic.2013.6675198

Google Scholar

[24] Vorobyeva, E. A., Chechenin, N. G., Makarenko, I. V., Kepman, A. V., Journal of Composite Science 1 (2017) 6.

Google Scholar

[25] Wang, H., Li X., Ma, J., Li G., Hu, T., Composites: Part A 43 (2012), pp.317-324.

Google Scholar

[26] Yamanaka, S., Gonda, R., Kawasaki, A., Sakamoto, H., Mekuchi, Y., Kuno, M., Tsukada, T., Materials Transactions, 48 (9) (2007), pp.2506-2512.

DOI: 10.2320/matertrans.mra2007084

Google Scholar

[27] Kim, K.T., Ha, G.H., Eckert, J., J. Alloys Compd. 509 (2011), p.412–415.

Google Scholar

[28] Babu, R. V., Kanagaraj, S., J. Mater. Process. Technol. 258 (2018), pp.296-309.

Google Scholar

[29] Sule, R., Olubambi, P.A., Sigalas, I., Asante, J.K.O., Garrett, J.C., Roos, W.D., Synth. Met. 202 (2015), p.123–132.

Google Scholar

[30] Vallet, G.-M., Dunand, M., Silvain, J.-F., Universal Journal of Materials Science 3(4) (2015), pp.55-61.

Google Scholar

[31] Weidmueller, H., Weissgaerber, T., Hutsch, T., Huenert, R., Schmitt, T., Mauthner, K., Schulz-Harder, S., Journal of Korean Powder Metallurgy Institute, 13 (5) (2006).

DOI: 10.4150/kpmi.2006.13.5.321

Google Scholar

[32] Weidmueller, H., Weissgaerber, T., Hutsch, T., Huenert, R., Schmitt, T., Mauthner, K., Schulz-Harder, S., Materials Science Forum, 534-536 (2007), pp.853-856.

DOI: 10.4028/www.scientific.net/msf.534-536.853

Google Scholar

[33] Hutsch, T., Delinsky, W., Weißgärber, T., Leonhardt, A., Kieback, B., Proceedings International Conference on Composites/Nano Engineering (ICCE 22), Malta, 13.-19.07.(2014).

Google Scholar

[34] Hutsch, T., Riesselmann, J., Walther, G., Weißgärber, T., Kieback, B., Brieß, K., Proceedings Euro PM 2018 Powder Metallurgy Congress & Exhibition, Bilbao, Spain, October 14-18 (2018).

Google Scholar

[35] Park, K., Jung, D., Int. J. Heat Mass Transfer, 50 (21-22) (2007), pp.4499-4502,.

DOI: 10.1016/j.ijheatmasstransfer.2007.03.012

Google Scholar

[36] Park, K., Jung, D., Energy and Buildings, 39 (9) (2007), pp.1061-1064,.

DOI: 10.1016/j.enbuild.2006.12.001

Google Scholar

[37] Ujereh, S., Fisher, T., Mudawar, I., Int. J. Heat Mass Transfer, 50 (19-20) (2007), pp.4023-4038,.

DOI: 10.1016/j.ijheatmasstransfer.2007.01.030

Google Scholar

[38] Lee, C.Y., Bhuiya, M.M.H., Kim, K.J., Int. J. Heat Mass Transfer, 53 (19-20) (2010), pp.4274-4279,.

DOI: 10.1016/j.ijheatmasstransfer.2010.05.054

Google Scholar

[39] Kim, S.H., Lee, G.C., Kang, J.Y., Moriyama, K., Kim, M.H., Park, H.S., Int. J. Heat Mass Transfer, 91 (2015), pp.1140-1147.

DOI: 10.1016/j.ijheatmasstransfer.2015.07.120

Google Scholar

[40] Shojaeian, M., Kosar, A., Exp. Therm Fluid Sci., 63 (2015), pp.45-73,.

DOI: 10.1016/j.expthermflusci.2014.12.016

Google Scholar

[41] Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., Ahn, H.S., Exp. Therm Fluid Sci., 66 (2015), pp.173-196,.

DOI: 10.1016/j.expthermflusci.2015.03.023

Google Scholar

[42] Quan, X., Dong, L., Cheng, P., Int. J. Heat Mass Transfer, 76 (2017), pp.452-458,.

DOI: 10.1016/j.ijheatmasstransfer.2014.04.037

Google Scholar

[43] Lu, S., Yao, Z., Hao, P., Fu, C., Sci. China Phys. Mech. Astron., 53 (7) (2010), pp.1298-1305,.

DOI: 10.1007/s11433-010-4035-9

Google Scholar

[44] Ming, Z., Jian, L., Chunxia, W., Xiaokang, Z., Lan, C., Soft Matter, 7 (9) (2011), pp.4391-4396,.

DOI: 10.1039/C0SM01426E

Google Scholar