High-Speed Laser Melt Injection of Tungsten Carbide in Highly Conductive Copper Alloys

Article Preview

Abstract:

For the first time, metal matrix composite (MMC) layers on parts made of highly conductive copper alloys have been generated by laser melt injection (LMI). In order to ensure a sufficient absorption efficiency, different kinds of surface modification were investigated. Welding speeds up to 7.5 m/min can be obtained. When increasing the dispersing rate, the process efficiency, which is the product of absorption efficiency and thermal efficiency, increases. At high dispersing rates, some spherical fused tungsten carbide (SFTC) particles are slightly deformed or partly fused together without decreasing the hardness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-99

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Haubold et al., Laser welding of copper using a high power disc laser at green wavelength, Procedia CIRP 74 (2018) 446-449.

DOI: 10.1016/j.procir.2018.08.161

Google Scholar

[2] N. Fecht, Grüner Laser schließt Lücke der Kupferbearbeitung, IndustryArena eMagazine 4 (2017) 10-11.

Google Scholar

[3] C. Keller, Processing of Highly Reflective Materials, Laser Technik Journal 4 (2017) 30-33.

Google Scholar

[4] H. Freiße et al., Laser generated tool surface out of metal matrix composite, Dry Met. Forming OAJ FMT 3 (2017) 41-44.

Google Scholar

[5] O. Velde, A. Techel and R. Grundmann, Suppression of the development of pores during laser-induced surface dispersion of TiC into aluminium, by means of a static magnetic field, Surface and Coatings Technology 150 (2002) 170–176.

DOI: 10.1016/s0257-8972(01)01531-6

Google Scholar

[6] F. Dausinger, Strahlwerkzeug Laser: Energieeinkopplung und Prozesseffektivität, B. G. Teubner, Stuttgart, (1995).

Google Scholar

[7] R. Poprawe, Lasertechnik für die Fertigung, Springer, Berlin Heidelberg, (2005).

Google Scholar

[8] K. Partes, Hochgeschwindigkeitsbeschichten mit dem Laserstrahl, BIAS, Bremen, (2008).

Google Scholar

[9] V.Yu. Khaskin et al., Effect of laser radiation absorption on efficiency of laser welding of copper and its alloys, The Paton Welding Journal 11 (2016).

DOI: 10.15407/tpwj2016.11.05

Google Scholar

[10] J. Wilden et al., Löten als Schlüssel zum ressourcen- und energieeffizienten Fügen im Produktlebenszyklus, Schweißen und Schneiden 62 (2010) 264-277.

Google Scholar