Effect of Processing Conditions on Bonding Strength at Al(Si)/Diamond Interfaces

Article Preview

Abstract:

Understanding thermos-physical properties of MMCs includes considering interfacial processes and interactions between the constituents in MMCs. In this context, interfacial bonding is of vital interest for a deeper understanding of composites. Neutron diffraction experiments on Al/diamond composites were performed and reconciled with their thermo-physical properties and quantification of interfacial carbides formation. To create different interfacial conditions both, the contact time during processing the MMCs by liquid metal infiltration and the nominal composition of the matrix were changed, thus creating different amounts of interfacial Al4C3 carbides. Neutron diffraction showed the increase in contact time and the addition of Si to Al both increase the bonding strength, although going with a significant decrease of the composite`s thermal conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-120

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schöbel M, Altendorfer W, Degischer HP, Vaucher S, Buslaps T, Michiel MD, et al. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications. Composites Science and Technology. 2011;71(5):724-33.

DOI: 10.1016/j.compscitech.2011.01.020

Google Scholar

[2] Schöbel M, Degischer HP, Vaucher S, Hofmann M, Cloetens P. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum. Acta Materialia. 2010;58(19):6421-30.

DOI: 10.1016/j.actamat.2010.08.004

Google Scholar

[3] Kouzeli M, Weber L, San Marchi C, Mortensen A. Quantification of microdamage phenomena during tensile straining of high volume fraction particle reinforced aluminium. Acta Materialia. 2001;49(3):497-505.

DOI: 10.1016/s1359-6454(00)00334-7

Google Scholar

[4] Monje IE, Louis E, Molina JM. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Composites Part A: Applied Science and Manufacturing. 2013;48(0):9-14.

DOI: 10.1016/j.compositesa.2012.12.010

Google Scholar

[5] Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A. Microstructural characterization and quantitative analysis of the interfacial carbides in Al(Si)/diamond composites. Journal of Materials Science. 2018;53(22):15514-29.

DOI: 10.1007/s10853-018-2734-1

Google Scholar

[6] Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ. Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Composites Science and Technology. 2006;66(15):2677-85.

DOI: 10.1016/j.compscitech.2006.03.016

Google Scholar

[7] Monachon C, Weber L. Influence of diamond surface termination on thermal boundary conductance between Al and diamond. Journal of Applied Physics. 2013;113(18):183504.

DOI: 10.1063/1.4804061

Google Scholar

[8] Edtmaier C, Bauer E, Weber L, Tako ZS, Segl J, Friedbacher G. Temperature dependence of the thermal boundary conductance in Ag–3Si/diamond composites. Diamond and Related Materials. 2015;57:37-42.

DOI: 10.1016/j.diamond.2015.01.010

Google Scholar

[9] Edtmaier C, Bauer E, Segl J, Foelske-Schmitz A, Pambaguian L. Thermophysical behavior of diamond composites for diode laser heat sink applications at temperatures between 4 K and ambient. 46th International Conference on Environmental Systems. Vienna: Texas Tech University Library; 2016. pp.1-14.

Google Scholar

[10] Hutsch T, Schubert T, Weißgärber T, Kieback B. Thermal conductivity of PM Cu/diamond composites depending on the chromium content-prediction and characterization. World PM 2016 Congress and Exhibition2016.

Google Scholar

[11] Schubert T, Trindade B, Weißgärber T, Kieback B. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Materials Science and Engineering: A. 2008;475(1–2):39-44.

DOI: 10.1016/j.msea.2006.12.146

Google Scholar

[12] Hutsch T, Schubert T, Weißgärber T, Kieback B. Silver/diamond composite material - Powder metallurgical route and thermo-physical properties. Key Engineering Materials2017. pp.151-7.

DOI: 10.4028/www.scientific.net/kem.742.151

Google Scholar

[13] Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, et al. Interface formation in infiltrated Al(Si)/diamond composites. Diamond and Related Materials. 2006;15(9):1250-60.

DOI: 10.1016/j.diamond.2005.09.036

Google Scholar

[14] Chen G, Yang W, Xin L, Wang P, Liu S, Qiao J, et al. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. Journal of Alloys and Compounds. 2018;735:777-86.

DOI: 10.1016/j.jallcom.2017.11.183

Google Scholar

[15] Hofmann M, Schneider R, Seidl GA, Rebelo-Kornmeier J, Wimpory RC, Garbe U, et al. The new materials science diffractometer STRESS-SPEC at FRM-II. Physica B: Condensed Matter. 2006;385-386:1035-7.

DOI: 10.1016/j.physb.2006.05.331

Google Scholar

[16] Zeitelhack K, Schanzer C, Kastenmüller A, Röhrmoser A, Daniel C, Franke J, et al. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006;560(2):444-53.

DOI: 10.1016/j.nima.2005.12.215

Google Scholar

[17] Hoelzel M, Gan WM, Hofmann M, Randau C, Seidl G, Jüttner P, et al. Rotatable multifunctional load frames for neutron diffractometers at FRM II—design, specifications and applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2013;711:101-5.

DOI: 10.1016/j.nima.2013.01.049

Google Scholar

[18] Rebelo-Kornmeier J, Hofmann M, Gan WM, Randau C, Braun K, Zeitelhack K, et al. New Developments of the Materials Science Diffractometer STRESS-SPEC. Materials Science Forum. 2017;905:151-6.

DOI: 10.4028/www.scientific.net/msf.905.151

Google Scholar

[19] Randau C, Garbe U, Brokmeier H-G. StressTextureCalculator: a software tool to extract texture, strain and microstructure information from area-detector measurements. Journal of Applied Crystallography. 2011;44(3):641-6.

DOI: 10.1107/s0021889811012064

Google Scholar

[20] Rebelo Kornmeier J, Gibmeier J, Hofmann M. Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample. Measurement Science and Technology. 2011;22(6):065705.

DOI: 10.1088/0957-0233/22/6/065705

Google Scholar