Papers by Keyword: CNC Milling

Paper TitlePage

Abstract: Because of their extraordinary qualities, titanium alloys are very sought-after materials that can be applied to a wide range of sectors. Excellent mechanical and chemical qualities, including a high strength-to-weight ratio and resistance to corrosion, are present in it. The special properties of these alloys make machining them extremely difficult. As frequent tool wear occurs throughout the machining process, Computer Numerical Control (CNC) milling has become a potential method for machining titanium alloys due to its precision and versatility. This review article provides a comprehensive overview of the development of titanium alloy CNC milling, with an emphasis on the effects of cutting tool geometries and materials on machining efficiency. The process examines several aspects of cutting circumstances, including depth of cut, speed, feed rate, and lubrication techniques, and optimizes machining parameters and procedures to achieve the best results. Surface integrity and quality, surface roughness, residual stresses, and microstructural changes brought about by CNC milling are the main points of evaluation.
11
Abstract: A systematic and detailed approach in design and manufacturing of blow molds for bottles made of PET and PP plastic material with CAD/CAM software tools is presented, as many production errors and product deficiencies stem from inaccurate and imprecise tooling. Apart from high mold accuracy, proper planning also includes the minimization of mold machining costs, which mainly derives from CNC machining time and cutting tool wear. Blow mold design and manufacturing revolves around two major axes: (a) mold material and (b) machining parameter values. The former is critical in terms of production rates and mold life-cycle and the latter has a great impact on mold manufacturing cost, as well as on quality of the produced plastic bottles. Proper choice of machining parameters has a significant impact on thermal conductivity, durability, hardness, stiffness and roughness of the mold. The proposed methodology was implemented on three different test cases (beverage plastic bottles molds) and it was concluded that even the same machining parameter values offer the same mold quality.
448
Abstract: Based on the experiment of milling aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in milling aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed and increased with the increase of feed speed and cutting depth. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that feed speed and cutting depth have remarkable influence to fractal dimension Dx and Dy, cutting speed and feed speed for Dz.
212
Abstract: Throughout the production process, improper planning and exploitation of the CAD/CAM system leads to the low level utilization of the CNC milling machine. In product design, tangible prototype is fabricated using CAD/CAM techniques in the design phase to analyse and modify the product before actual production. In this research, industrial clay is used as the prototype material. The objectives of the study are to investigate the machining parameters of industrial clay using the CNC milling machine and to apply the CAD/CAM system in producing a clay sample part via the CNC milling machine. Using uncomplicated and low cost setup for the fabrication method, an industrial clay sample part is prepared in the CAD/CAM system and shaped using the CNC milling machine. The difference between the simulated and the actual machining time of the machined part is analysed.
32
Abstract: In this paper, a comparison between CNC manufacturing and Rapid Prototyping technology (FDM – Fused Deposition Modeling process), applied for a cam fabrication, is presented. In the products development area, a substantial support is offered by models, as intermediate between product configuration and technology design. The CAD/CAM/CNC technology is a widely used technique for creating prototypes, as well as production parts, using a subtractive type material-removal procedure from a semi-manufactured article. The rapid prototyping (RP) technologies are additive processes, where the part is built up layer by layer until done, directly from the 3D CAD model, within the precision limits of the chosen process. Similarities and differences between these two coexisting computer driven prototyping processes, the subtractive CNC 3 – axes milled part production and the additive RP/ FDM technique, are pointed out for a disk cam manufacturing as sample part.
553
Abstract: In NC milling tool path reflects all the processing process, the tool path is reasonable or not, related to the workpiece processing quality and production efficiency, through several parts of the typical contour shape analysis, determination method of NC machining tool path, determined by the combination of NC milling tool path, to reduce the surface roughness of the workpiece, improve workpiece processing quality objective.
560
Abstract: This article focuses on the tool setting methods and techniques of disk parts and hole parts , in order to improve the precision and efficiency of the tool setting, so as to improve NC milling machining quality and machining efficiency of Nc milling.
1283
Abstract: In this paper the computer aided design and manufacture of a rot with winglet for performance enhancement of a vertical axis wind turbine is presented. Both computer numerical control milling and rapid prototyping have been used in the manufacture of the rotor. The rotor was then tested for performance using the large wind tunnel of the Aerodynamics laboratory of University of New South Wales. The results show substantial improvement of the rotor with the winglets installed.
581
Abstract: Milling is one of the most practical machining processes for removing excess material to produce high quality surfaces. However, milling of composite materials is a rather complex task, owing to its heterogeneity and poor surface finish, which includes fibre pullout, matrix delamination, sub-surface damage and matrix polymer interface failure. In this study, an attempt has been made to optimize milling parameters with multiple performance characteristics in the edge milling operation, based on the Grey Relational Analysis coupled with Taguchi method. Taguchi’s L18 orthogonal array was used for the milling experiment. Milling parameters such as milling strategy, spindle speed, feed rate and depth of cut are optimised along with multiple performance characteristics, such as machining forces and delamination. Response table of grey relational grade for four process parameters is used for the analysis to produce the best output; the optimal combination of the parameters. From the response table of the average GRG, it is found that the largest value of the GRG is for down milling, spindle speed of 1000 rpm, feed rate of 150 mm/min and depth of cut 0.4 mm.
18
Abstract: the numerical control milling process design is on the basis of ordinary milling process design, combining with the characteristics of CNC milling machine, give full play to its advantages. CNC milling process design is the key to reasonable arrangement of process route, to coordinate the relationship between the CNC milling process and other process, determine the content and steps of NC milling process make the necessary preparations for programming. NC milling machining process analysis is related to the effectiveness and success or failure, is one of the important preparations before programming. This article will mainly for NC milling machining precision and machining error analysis and research.
1214
Showing 1 to 10 of 20 Paper Titles