Papers by Keyword: Taguchi Optimization Method

Paper TitlePage

Abstract: Micro and mini manufacturing is becoming more important than before. Among micro and mini manufacturing processes, micro forming has economical and ecological benefits due to high production rate, low material scrap rate, net shape production, and improved mechanical properties through work hardening. Even though macro scale metal forming is well understood and has been extensively studied, these concepts cannot be applied directly to the micro scale metal forming [. In this paper, a conical mini-part was precisely evaluated from finite element (FE) simulation. The final geometry of the conical mini-part is affected by forming parameters of the deep drawing process (blankholder force, friction coefficient, speed of the deformation tools) and by the tool geometry. In order to reduce the geometry deviation, all the parameters must be studies separately to quantify their influence on the final mini-part geometry. This paper presents a study concerning the optimization of the forming process in order minimize the geometry deviation of the final parts. The main objective is to understand the factors that have the highest influence on the forming process of conical mini-parts and to modify them in such way that the resulted part is according to the designer specifications. The material used in this analysis is copper - zinc alloy with anisotropic properties. After the forming process of conical mini-parts is over and the part is removed from the forming tools, the geometry of the part is analysed and compared with the ideal shape. Due to cumulated effect of springback and other phenomena that affect the conical mini-part is not having the desired accuracy from the dimensional deviation point of view [2,. There are multiple factors that affect the mini-part geometry during forming process as: blankholder force, punch rounding radius, and side wall angle. The Dynaform 5.9.1 software was used to simulate the forming process. During optimisation process 27 simulations have been done. The part obtained after each simulation is analyzed and measured to quantify the deviation from the ideal part geometry. The presented optimization method is a good method to reduce the dimensional deviations. The advantages of this method are the reduced number of simulations tests that must be done and precision of the obtained results.
132
Abstract: Improvement of materials properties induced by constrained groove pressing (CGP) depends largely on deformation homogeneity. Utilizing commercial software DEFORM-3D, a finite element model of multi-pass CGP was established. The distribution and homogeneity evolution of equivalent strain ware analyzed in detail. Based on Taguchi optimization method, the influence of processing parameters (such as groove width, groove angle, friction coefficient and deformation rate) on strain homogeneity was studied numerically and systematically. Within a certain range, the optimum parameter combination is obtained by means of signal to noise ratio analysis. The inhomogeneity factor of the optimum model decreases by about 50 %. The average accumulative equivalent strain is almost twice that of the initial model. Analysis of variance shows that groove angle and groove width are the two most important parameters and effect of friction between dies and sample should not be neglected.
505
Abstract: Glass is one of the most difficult materials to be machined due to its brittle nature and unique structure such that the fracture is often occurred during machining and the surface finish produced is often poor. CNC milling machine is possible to be used with several parameters making the machining process on the glass special compared to other machining process. However, the application of grinding process on the CNC milling machine would be an ideal solution in generating special products with good surface roughness. This paper studies how to optimize the different machining parameters in glass grinding operation on CNC machine seeking for best surface roughness. These parameters include the spindle speed, feed rate, depth of cut, lubrication mode, tool type, tool diameter and tool wear. To optimize these machining parameters in which the most significant parameters affecting the surface roughness can be identified, Taguchi optimization method is used with the orthogonal array of L8(26). However, to obtain the most optimum parameters for best surface roughness, the signal to noise (S/N) response analysis and Pareto analysis of variance (ANOVA) methods are implemented. Finally, the confirmation test is carried out to investigate the improvement of the optimization. The results showed an improvement of 8.91 % in the measured surface roughness.
721
Abstract: The effects of the process parameters on the warpge and shrinkage of parts in different thickness are analyzed by Taguchi optimization method. Taguchi optimization method was used for exploiting mold analysis based on three level factorial designs. Orthogonal arrays of Taguchi, the signal-to-noise (S/N) ratio, the analysis of variance (ANOVA) are utilized to find the optimal levels and the effect of process parameters on warpage. It can be concluded that Taguchi method is suitable to solve the quality problem of the injection-molded thermoplastic parts.
525
Showing 1 to 4 of 4 Paper Titles