Effects of Milling Speed and Calcination Temperature on the Phase Stability of Ba0.5Sr0.5Co0.8Fe3-δ

Article Preview

Abstract:

The phase instability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is widely reported in atmospheres containing carbon dioxide, which affects the long term electrochemical performance. The aim of this study is to investigate the phase stability of BSCF under the influence of milling and calcination temperature. Commercial BSCF powder was milled at 200 and 500 rpm and subsequently calcined at 750, 800 and 900 °C. The BSCF samples were characterized by using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). Secondary phases that were triggered after milling, however reduced with the increase of calcination temperature up to 800 °C. It was also found that the reduction of crystallite size and particle size at increased calcination temperature might be affected by the removal of these secondary carbonate phases. Moreover, the removal of carbonate was clearly evidenced in FTIR spectra by the reduction of carbonate signal intensities. In brief, a minimum calcination temperature of 900 °C was suggested for successful carbonate removal and recovery of single BSCF phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-51

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Daneshmandi, P. Sohrabi, H. Salamati, M. Ranjbar, Effect of oxygen pressure on structural and electrical properties of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ/SrTiO3(200) by reactive pulsed laser deposition, Mater. Lett. 109 (2013) 233–236.

DOI: 10.1016/j.matlet.2013.07.086

Google Scholar

[2] R.B. Nuernberg, M.R. Morelli, Synthesis of BSCF perovskites using a microwave-assisted combustion method, Ceram. Int. 42(3) (2016) 4204–4211.

DOI: 10.1016/j.ceramint.2015.11.094

Google Scholar

[3] F. Shen, K. Lu, Comparative study of La0. 6Sr0. 4Co0. 2Fe0. 8O3, Ba0. 5Sr0. 5Co0. 2Fe0. 8O3 and Sm0. 5Sr0. 5Co0. 2Fe0. 8O3 cathodes and the effect of Sm0. 2Ce0. 8O2 block layer in solid oxide fuel cells, Int. J. Hydrogen Energy. 40(46) (2015).

DOI: 10.1016/j.ijhydene.2020.10.113

Google Scholar

[4] Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature. 431(7005) (2004) 170–173.

DOI: 10.1038/nature02863

Google Scholar

[5] D. Rembelski, J.P. Viricelle, L. Combemale, M. Rieu, Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF, Fuel Cells. 12(2) (2012) 256–264.

DOI: 10.1002/fuce.201100064

Google Scholar

[6] S. Zeljkovic, T. Ivas, S. Vaucher, D. Jelic, L. Gauckler, The changes of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ perovskite oxide on heating in oxygen and carbon dioxide atmospheres, J. Serbian Chem. Soc. 79(9) (2014) 1141–1154.

DOI: 10.2298/jsc131024018z

Google Scholar

[7] P. Liu, J. Kong, Q. Liu, X. Yang, S. Chen, Relationship between powder structure and electrochemical performance of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3 − δ cathode material, J. Solid State Electrochem. 18 (2014) 1513–1517.

DOI: 10.1007/s10008-013-2374-y

Google Scholar

[8] Y. He, L. Fan, M. Afzal, M. Singh, W. Zhang, Y. Zhao, J. Li, B. Zhu, Cobalt oxides coated commercial Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ as high performance cathode for low-temperature SOFCs, Electrochim. Acta. 191 (2016) 223–229.

DOI: 10.1016/j.electacta.2016.01.090

Google Scholar

[9] M. Brisotto, F. Cernuschi, F. Drago, C. Lenardi, P. Rosa, C. Meneghini, M. Merlini, C. Rinaldi, High temperature stability of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ and La0. 6Sr0. 4Co1-yFeyO3-δ oxygen separation perovskite membranes, J. Eur. Ceram. Soc. 36(7) (2015).

DOI: 10.1016/j.jeurceramsoc.2016.01.029

Google Scholar

[10] Z. Zhao, L. Liu, X. Zhang, B. Tu, D. Ou, Carbonates formed during BSCF preparation and their effects on performance of SOFCs with BSCF cathode, Int. J. Hydrogen Energy. 37(24) (2012) 19036–19044.

DOI: 10.1016/j.ijhydene.2012.09.142

Google Scholar

[11] H.S. Hong, S. Lee, Fabrication and characterization of 900 °C-sintered Ni/Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method, J. Alloys Compd. 538 (2012) 201–204.

DOI: 10.1016/j.jallcom.2012.06.002

Google Scholar

[12] F.S. Torknik, A. Maghsoudipour, M. Keyanpour-Rad, G.M. Choi, S.H. Oh G.Y. Shin, Microstructural refinement of Ni/Ce0. 8Gd0. 2O2−δ anodes for low-temperature solid oxide fuel cell by wet infiltration loading of PdCl2, Ceram. Int. 40(8) (2014).

DOI: 10.1016/j.ceramint.2014.04.075

Google Scholar

[13] C. Niedrig, S. Taufall, M. Burriel, W. Menesklou, S. F. Wagner, S. Baumann, E. Ivers-Tiffée, Thermal stability of the cubic phase in Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ (BSCF)1, Solid State Ionics. 197(1) (2011) 25–31.

DOI: 10.1016/j.ssi.2011.06.010

Google Scholar

[14] E. Bucher, A. Egger, G.B. Caraman, W. Sitte, Stability of the SOFC cathode material (Ba, Sr)(Co, Fe)O3−δ in CO2-containing atmospheres, J. Electrochem. Soc. 155(11) (2008) B1218.

DOI: 10.1149/1.2981024

Google Scholar

[15] J. Coates: in Interpretation of Infrared Spectra, A Practical Approach , edited by R.A. Meyers, John Wiley & Sons, Inc. (2000).

Google Scholar

[16] H. A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Structure and thermal properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ–SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells, Ceram. Int. 38(2) (2012) 1571–1576.

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[17] A. Yan, V. Maragou, A. Arico, M. Cheng, P. Tsiakaras, Investigation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3- δ based cathode SOFC. II. The effect of CO2 on the chemical stability, Appl. Catal. B Environ. 76(3–4) (2007) 320–327.

DOI: 10.1016/j.apcatb.2007.06.010

Google Scholar