Recycling of Lithium Iron Phosphate Batteries: Future Prospects and Research Needs

Article Preview

Abstract:

Since the first synthesis of lithium iron phosphate (LFP) as active cathode material for lithium-ion batteries (LIB) in 1996, it has gained a considerable market share and further growth is expected. Main applications are the fast-growing sectors electromobility and to a lesser extend stationary energy storage. Despite increasing return flows, so far, little emphasis has been put on the recycling of LFP batteries due to the low content of high-value metals. In this study, current developments in the LFP battery market are presented. Furthermore, recycling processes for LIBs are reviewed and their applicability for LFP batteries is assessed. Currently, China is the main market for LFP batteries and rapidly increasing return flows are observed. In Europe and the USA, other battery chemistries are predominant. For LFP battery recycling, individually adaptable processes based on mechanical treatment of the cells followed by hydrometallurgical processing of the active cathode material seem to be the most promising approach. However, at present, these processes are only available at pilot scale, the profitability and their environmental performance are questionable. Therefore, further research addressing these challenges is urgently needed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-68

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Möller K-C (2013): Übersicht über die Speichersysteme/Batteriesysteme: In: Korthauer R (ed) Handbuch Lithium-Ionen-Batterien, 1st edn. Springer Vieweg, Berlin Heidelberg, 3–9.

DOI: 10.1007/978-3-642-30653-2_1

Google Scholar

[2] Thielmann A, Sauer A, Wietschel M: Gesamt-Roadmap Lithium-Ionen-Batterien 2030: http://archive.today/aunpk. Accessed 24 May (2018).

Google Scholar

[3] Yoshino A (2014): Development of the lithium-ion battery and recent technological trends: In: Pistoia G (ed) Lithium-Ion Batteries, 1st edn. Elsevier, p.1–20.

DOI: 10.1016/b978-0-444-59513-3.00001-7

Google Scholar

[4] Wang X, Gaustad G, Babbitt CW et al. (2014): Economic and environmental characterization of an evolving Li-ion battery waste stream: J. Environ. Manage. 135: 126–134.

DOI: 10.1016/j.jenvman.2014.01.021

Google Scholar

[5] Graf C (2013): Kathodenmaterialien für Lithium-Ionen-Batterien: In: Korthauer R (ed) Handbuch Lithium-Ionen-Batterien, 1st edn. Springer Vieweg, Berlin Heidelberg, p.31–44.

DOI: 10.1007/978-3-642-30653-2_4

Google Scholar

[6] Elwert T, Goldmann D, Römer F et al. (2015): Current developments and challenges in the recycling of key components of (hybrid) electric vehicles: Recycling 1(1): 25–60.

DOI: 10.3390/recycling1010025

Google Scholar

[7] Blomgren GE (2017): The development and future of lithium ion batteries: J. Electrochem. Soc. 164(1): A5019-A5025.

DOI: 10.1149/2.0251701jes

Google Scholar

[8] Nitta N, Wu F, Lee JT et al. (2015): Li-ion battery materials: Present and future. Mater. Today 18(5): 252–264.

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[9] Wurm C, Öttinger O, Wittkämper S et al. (2013): Anodenmaterialien für Lithium-Ionen-Batterien: In: Korthauer R (ed) Handbuch Lithium-Ionen-Batterien, 1st edn. Springer Vieweg, Berlin Heidelberg, p.45–60.

DOI: 10.1007/978-3-642-30653-2_5

Google Scholar

[10] Wang Y, Zhong W-H (2015): Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review. ChemElectroChem 2(1): 22–36.

DOI: 10.1002/celc.201402277

Google Scholar

[11] Rui X, Yan Q, Skyllas-Kazacos M et al. (2014): Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources 258: 19–38.

DOI: 10.1016/j.jpowsour.2014.01.126

Google Scholar

[12] Vuorilehto K (2013): Materialien und Funktionen: In: Korthauer R (ed) Handbuch Lithium-Ionen-Batterien, 1st edn. Springer Vieweg, Berlin Heidelberg, p.21–29.

DOI: 10.1007/978-3-642-30653-2_3

Google Scholar

[13] Padhi AK, Nanjundaswamy KS, Goodenough JB (1997): Phospho-olivines as positive-electrode materials for rechargeable lithium batteries: J. Electrochem. Soc. 144(4): 1188–1194.

DOI: 10.1149/1.1837571

Google Scholar

[14] Satyavani TVSL, Srinivas Kumar A, Subba Rao PSV (2016): Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review. JESTECH 19(1): 178–188.

DOI: 10.1016/j.jestch.2015.06.002

Google Scholar

[15] Yuan L-X, Wang Z-H, Zhang W-X et al. (2011): Development and challenges of LiFePO4 cathode material for lithium-ion batteries: Energy Environ. Sci. 4(2): 269–284.

Google Scholar

[16] Zeng X, Li J (2014): Spent rechargeable lithium batteries in e-waste: Composition and its implications. Front. Environ. Sci. Eng. 8(5): 792–796.

DOI: 10.1007/s11783-014-0705-6

Google Scholar

[17] Buchert M, Sutter J: Ökobilanzen zum Recyclingverfahren LithoRec II für Lithium-Ionen-Batterien: http://archive.today/QcPQ4. Accessed 24 May (2018).

Google Scholar

[18] Kang B, Ceder G (2009): Battery materials for ultrafast charging and discharging: Nature 458(7235): 190–193.

DOI: 10.1038/nature07853

Google Scholar

[19] Scrosati B, Garche J (2010): Lithium batteries: Status, prospects and future. J. Power Sources 195(9): 2419–2430.

DOI: 10.1016/j.jpowsour.2009.11.048

Google Scholar

[20] Pivko M, Bele M, Tchernychova E et al. (2012): Synthesis of nanometric LiMnPO4 via a two-step technique: Chem. Mater. 24(6): 1041–1047.

DOI: 10.1021/cm203095d

Google Scholar

[21] Bramnik NN, Nikolowski K, Baehtz C et al. (2007): Phase transitions occurring upon lithium insertion−extraction of LiCoPO4: Chem. Mater. 19(4): 908–915.

DOI: 10.1021/cm062246u

Google Scholar

[22] Amine K, Yasuda H, Yamachi M (2000): Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries: Electrochem. Solid-State Lett. 3(4): 178–179.

DOI: 10.1002/chin.200026012

Google Scholar

[23] Wolfenstine J, Allen J (2005): Ni3+/Ni2+ redox potential in LiNiPO4: J. Power Sources 142(1-2): 389–390.

DOI: 10.1016/j.jpowsour.2004.11.024

Google Scholar

[24] Hartnig C, Schmidt M (2013): Elektrolyte und Leitsalze: In: Korthauer R (ed) Handbuch Lithium-Ionen-Batterien, 1st edn. Springer Vieweg, Berlin Heidelberg, p.61–77.

DOI: 10.1007/978-3-642-30653-2_6

Google Scholar

[25] Pillot C (2017): The rechargeable battery market and main trends 2016 - 2025: BATTERIES, Nice, France.

Google Scholar

[26] Pillot C (2017): Lithium-ion battery raw material supply and demand 2016 - 2025: AABC-US, San Francisco.

Google Scholar

[27] Roland Berger Strategy Consultants: The lithium-ion battery value chain: http://www.icatconf.com/Sunumlar/SESSION4/3_LiB-Market-Overview-SHORT_2012-08-03_TR%20version.pdf. Accessed 20 Jan (2017).

Google Scholar

[28] Garche J (2017): Lead-acid batteries for future automobiles:, 1st edn. Elsevier Ltd, Oxford.

Google Scholar

[29] Martens H, Goldmann D (2016): Recyclingtechnik: Fachbuch für Lehre und Praxis., 2nd edn. Springer Vieweg, Wiesbaden.

DOI: 10.1007/978-3-658-02786-5

Google Scholar

[30] Thielmann A, Sauer A, Wietschel M: Produkt-Roadmap Energiespeicher für die Elektromobilität 2030: http://archive.today/H8vmM. Accessed 24 May (2018).

Google Scholar

[31] Fetcenko M, Koch J, Zelinsky M (2015): Nickel–metal hydride and nickel–zinc batteries for hybrid electric vehicles and battery electric vehicles: In: Scrosati B, Garche J, Tillmetz W (eds) Advances in battery technologies for electric vehicles. Elsevier, Amsterdam, p.103–126.

DOI: 10.1016/b978-1-78242-377-5.00006-6

Google Scholar

[32] Perner A, Vetter J (2015): Lithium-ion batteries for hybrid electric vehicles and battery electric vehicles: In: Scrosati B, Garche J, Tillmetz W (eds) Advances in battery technologies for electric vehicles. Elsevier, Amsterdam, p.173–190.

DOI: 10.1016/b978-1-78242-377-5.00008-x

Google Scholar

[33] International Energy Agency: Global EV outlook 2018: Towards cross-modal electrification. http://archive.today/IJBWG. Accessed 28 Jun (2018).

DOI: 10.1787/9789264302365-en

Google Scholar

[34] Pontes J: Europe electric car sales: http://archive.today/B006f. Accessed 24 May (2018).

Google Scholar

[35] Renault: Battery and charging: Introducing the new Z.E. 40 battery. http://archive.today/AmTWQ. Accessed 24 May (2018).

Google Scholar

[36] BMW Group: The new 2017 BMW i3 (94 Ah): More range paired to high-level dynamic performance. http://archive.today/xF7MK. Accessed 30 Jan (2018).

Google Scholar

[37] Nissan: New Nissan LEAF: http://archive.today/Tz01j. Accessed 24 May (2018).

Google Scholar

[38] Nissan Motor Corporation: Electric vehicle lithium-ion battery: http://archive.today/jXhm0. Accessed 24 May (2018).

Google Scholar

[39] Tesla: Tesla Model S: https://www.tesla.com/de_DE/models/design. Accessed 24 May (2018).

Google Scholar

[40] Volkswagen: Der Passat GTE. Der Passat GTE Variant: https://cdn.volkswagen.at/media/Kwc…/der-neue-passat-gte-10-2017-web.pdf. Accessed 30 Jan (2018).

DOI: 10.1007/s35146-015-0087-8

Google Scholar

[41] Lima P: Volkswagen replaces its battery cell supplier: http://archive.today/WMWUP. Accessed 24 May (2018).

Google Scholar

[42] Volkswagen: e-Golf 2017: http://archive.today/FcbwF. Accessed 24 May (2018).

Google Scholar

[43] Total Battery Consulting Inc.: Battery packs of modern xEVs: A comprehensive engineering assessment. https://totalbatteryconsulting.com/industry-reports/Battery-packs-report/Extract-from-the-Battery-Pack-Report.pdf. Accessed 24 May (2018).

Google Scholar

[44] Tesla: Tesla Model X: https://www.tesla.com/de_DE/modelx/design. Accessed 24 May (2018).

Google Scholar

[45] EV Box: Mercedes-Benz GLC 350e: https://www.evbox.com/electric-cars/mercedes/mercedes-benz-glc-350e. Accessed 31 Jan (2018).

DOI: 10.1016/s1464-2859(16)30222-x

Google Scholar

[46] Lima P: SK Innovation to start producing NCM 811 battery cells soon: https://pushevs.com/2017/09/02/sk-innovation-start-producing-ncm-811-battery-cells-soon/. Accessed 30 Jan (2018).

Google Scholar

[47] SK innovation: Battery business: http://eng.skinnovation.com/business/battery.asp. Accessed 31 Jan (2018).

Google Scholar

[48] BMW Group: BMW eDrive der neuesten Generation: https://www.presseportal.de/download/…/336449-bmw-edrive-225xe-330e-de.pdf. Accessed 30 Jan (2018).

Google Scholar

[49] Edelstein S: Samsung wants to be major battery player, just like LG Chem: https://www.greencarreports.com/news/1105991_samsung-wants-to-be-major-battery-player-just-like-lg-chem. Accessed 30 Jan (2018).

Google Scholar

[50] Shahan Z: 2017's US electric car sales winners: https://cleantechnica.com/2018/01/08/tesla-model-s-tesla-model-x-chevy-bolt-2017s-us-electric-car-sales-winners/. Accessed 31 Jan (2018).

Google Scholar

[51] Lambert F: GM lists the price of the Chevy Bolt EV's battery pack at $15,734.29 – $262/kWh: https://electrek.co/2017/06/12/gm-bolt-ev-battery-pack-price-cost/. Accessed 31 Jan (2018).

Google Scholar

[52] UBS Limited: Q-Series: UBS evidence lab electric car teardown - disruption ahead?: http://www.advantagelithium.com/_resources/pdf/UBS-Article.pdf. Accessed 31 Jan (2018).

Google Scholar

[53] Voelcker J: 2017 Chevy Bolt EV development: GM, LG Chem reveal deep partnership: http://archive.today/R4nYz. Accessed 24 May (2018).

Google Scholar

[54] Green Motors: Toyota Prius Prime: Plug-in-Hybrid startet bei 37.550 Euro: https://www.green-motors.de/news/1702084124-toyota-prius-prime-preis. Accessed 24 May (2018).

Google Scholar

[55] Buckland K, Sagiike H: Toyota deepens Panasonic battery ties in electric-car rush: http://archive.today/Kzjto. Accessed 24 May (2018).

Google Scholar

[56] Pontes J: 2017 China electric car sales blow world out of the water: http://archive.today/7vRIE. Accessed 24 May (2018).

Google Scholar

[57] wattEV2Buy: BAIC EC180 EV: http://archive.today/fQ9Oc. Accessed 24 May (2018).

Google Scholar

[58] wattEV2Buy: Geely Zhidou D2 EV: http://archive.today/l67Sm. Accessed 24 May (2018).

Google Scholar

[59] Zhidou: Zhidou-D2: http://archive.today/rkqVP. Accessed 24 May (2018).

Google Scholar

[60] wattEV2Buy: BYD Song Crossover SUV PHEV: http://archive.today/EAi0u. Accessed 24 May (2018).

Google Scholar

[61] wattEV2Buy: Chery eQ EV: http://archive.today/NYf6J. Accessed 24 May (2018).

Google Scholar

[62] wattEV2Buy: JAC iEV6S: http://archive.today/AQRPH. Accessed 24 May (2018).

Google Scholar

[63] JAC: iEV6E: http://wap.jac.com.cn/jacweb/iev6e/20170406/6073.shtml. Accessed 05 Feb (2018).

Google Scholar

[64] Diandong: Jianghuai iEV6S dress brand Hua Ting power lithium battery : http://www.diandong.com/news/2016092040076.shtml. Accessed 24 May (2018).

Google Scholar

[65] wattEV2Buy: BYD e5 EV300: http://archive.today/fE84n. Accessed 24 May (2018).

Google Scholar

[66] Geely Global: Emgrand EV: http://archive.today/BRLni. Accessed 24 May (2018).

Google Scholar

[67] wattEV2Buy: BYD Qin PHEV: http://archive.today/u0laq. Accessed 24 May (2018).

Google Scholar

[68] wattEV2Buy: SAIC Roewe eRX5 PHEV: http://archive.today/44hGI. Accessed 24 May (2018).

Google Scholar

[69] OFweek New Energy Vehicle Network: Details of the 23 new energy vehicles in the 293th new car publicity: http://nev.ofweek.com/2017-02/ART-71010-8500-30105491_5.html. Accessed 24 May (2018).

Google Scholar

[70] wattEV2Buy: Zotye E200 EV: http://archive.today/CKa7g. Accessed 24 May (2018).

Google Scholar

[71] Lambert F: Tesla leads foreign electric car sales in China as government considers opening its growing market: https://electrek.co/2017/09/20/tesla-china-ev-sales/. Accessed 31 Jan (2018).

Google Scholar

[72] Wang W, Wu Y (2017): An overview of recycling and treatment of spent LiFePO4 batteries in China: Resour Conserv Recycl 127: 233–243.

Google Scholar

[73] Dogson L: Buses and batteries: a rising sector: https://www.power-technology.com/features/featurebuses-and-batteries-a-rising-sector-4904956/. Accessed 24 May (2018).

Google Scholar

[74] Elwert T, Römer F, Schneider K et al. (2018): Recycling of batteries from electric vehicles: In: Pistoia G, Liaw B (eds) Behaviour of Lithium-ion Batteries in Electric Vehicles - Battery Health, Performance, Safety, and Cost. Springer International Publishing, p.289–321.

DOI: 10.1007/978-3-319-69950-9_12

Google Scholar

[75] Weinert J, van Gelder E (2009): Applications - Transportation | Light Traction: Batteries. In: Encyclopedia of Electrochemical Power Sources. Elsevier, p.292–301.

DOI: 10.1016/b978-044452745-5.00374-9

Google Scholar

[76] Leiber N: Electric bikes won over China. Is the U.S. next?: http://archive.today/dTtjZ. Accessed 24 May (2018).

Google Scholar

[77] Yang C-J (2010): Launching strategy for electric vehicles: Lessons from China and Taiwan. Technol Forecast Soc Change 77(5): 831–834.

DOI: 10.1016/j.techfore.2010.01.010

Google Scholar

[78] Weinert JX, Ma C, Cherry C (2007): The transition to electric bikes in China: History and key reasons for rapid growth: Transportation 34: 301–318.

DOI: 10.1007/s11116-007-9118-8

Google Scholar

[79] Fishman E, Cherry C (2015): E-bikes in the mainstream: Reviewing a decade of research. Transport Reviews 36(1): 72–91.

DOI: 10.1080/01441647.2015.1069907

Google Scholar

[80] Buckley C: Beijing's electric bikes, the wheels of E-Commerce, face traffic backlash: http://archive.today/ck9it. Accessed 24 May (2018).

Google Scholar

[81] CONEBI: Absatz von E-Bikes in ausgewählten Ländern Europas in dem Jahr 2016 (in 1.000): http://archive.today/s1Jtz. Accessed 24 May (2018).

Google Scholar

[82] Blume S: Global energy storage market overview & regional summary report 2015: http://archive.today/COtYM. Accessed 24 May (2018).

Google Scholar

[83] Ibrahim H, Ilinca A, Perron J (2008): Energy storage systems—Characteristics and comparisons: Renewable and Sustainable Energy Reviews 12(5): 1221–1250.

DOI: 10.1016/j.rser.2007.01.023

Google Scholar

[84] Sterner M, Stadler I (2014): Energiespeicher - Bedarf, Technologien, Integration:, 1st edn. Springer, Berlin, Heidelberg.

DOI: 10.1007/978-3-642-37380-0_15

Google Scholar

[85] World Energy Council: World energy resources. E-Storage: https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_E-storage_2016.pdf. Accessed 01 Feb (2018).

Google Scholar

[86] Thielmann A, Sauer A, Schnell M et al.: Technologie-Roadmap Stationäre Energiespeicher 2030: http://www.isi.fraunhofer.de/isi-wAssets/docs/t/de/publikationen/TRM-SES.pdf. Accessed 24 May (2018).

Google Scholar

[87] Thielmann A, Sauer A, Wietschel M: Gesamt-Roadmap Stationäre Energiespeicher 2030: http://www.isi.fraunhofer.de/isi-wAssets/docs/t/de/publikationen/GRM-SES.pdf. Accessed 24 May (2018).

Google Scholar

[88] Bresser D, Paillard E, Passerini S (2015): Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: In: Menictas C, Skyllas-Kazacos M, Lim TM (eds) Advances in batteries for medium and large-scale energy storage. Elsevier Science, Amsterdam, p.125–211.

DOI: 10.1016/b978-1-78242-013-2.00006-6

Google Scholar

[89] European Parliament and the Council of the European Union (2000): Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on End-of Life Vehicles.

DOI: 10.1017/cbo9780511610851.046

Google Scholar

[90] European Parliament and the Council of the European Union (2006): Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC.

DOI: 10.1017/cbo9780511610851.024

Google Scholar

[91] Öko-Institut (2017): Strategien für die nachhaltige Rohstoffversorgung der Elektromobilität. Synthesepapier zum Rohstoffbedarf für Batterien und Brennstoffzellen. Studie im Auftrag von Agora Verkehrswende:.

Google Scholar

[92] European Commission: Public consultation on the evaluation of the Batteries Directive: http://archive.today/7YfVj. Accessed 24 May (2018).

Google Scholar

[93] Gong H, Wang MQ, Wang H (2013): New energy vehicles in China: Policies, demonstration, and progress. Mitig Adapt Strateg Glob Change 18(2): 207–228.

DOI: 10.1007/s11027-012-9358-6

Google Scholar

[94] Ministry of Science and Technology of the People's Republic of China: Notice on Implementing Energy-saving and New Energy Vehicles Pilot Project: http://www.most.gov.cn/fggw/zfwj/zfwj2009/200902/t20090224_67588.htm. Accessed 24 May (2018).

Google Scholar

[95] The Central People's Government of the People's Republic of China: Energy-saving and New Energy Vehicles Industry Development Program (2012-2020): http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm. Accessed 24 May (2018).

Google Scholar

[96] State Council General Office: Guiding Opinions of the General Office of the State Council on Popularization and Application of Electric Vehicles: http://www.gov.cn/zhengce/content/2014-07/21/content_8936.htm. Accessed 24 May (2018).

Google Scholar

[97] National Development and Reform Commission: Technology Policy on Power Battery Recycling for Electric Vehicles: http://www.ndrc.gov.cn/gzdt/201601/W020160128605285191658.pdf. Accessed 24 May (2018).

Google Scholar

[98] 98. U. S. Government Publishing Office: Electronic Code of Federal Regulations Part 273: https://www.ecfr.gov/cgi-bin/text-idx?SID=0501d91ec562faafa833c60c2404d806&mc=true&node=pt40.27.273&rgn=div5. Accessed 24 May (2018).

Google Scholar

[99] United States Environmental Protection Agency: Implementation of the Mercury-Containing and Rechargeable Battery Management Act: http://www.call2recycle.org/wp-content/uploads/ImplementationoftheMercury-ContainingandRechargeableBatteryManagementAct.pdf. Accessed 24 May (2018).

Google Scholar

[100] Richa K, Babbitt CW, Gaustad G et al. (2014): A future perspective on lithium-ion battery waste flows from electric vehicles: Resour Conserv Recycl 83: 63–76.

DOI: 10.1016/j.resconrec.2013.11.008

Google Scholar

[101] call2recycle: Recycling laws by state: http://www.call2recycle.org/recycling-laws-by-state/. Accessed 24:05:(2018).

Google Scholar

[102] United States California: AB 1125: Rechargeable Battery Recycling Act. http://www.leginfo.ca.gov/pub/05-06/bill/asm/ab_1101-1150/ab_1125_bill_20051006_chaptered.pdf. Accessed 24:05:(2018).

Google Scholar

[103] United States New York: Rechargeable Battery Recycling Law: http://www.dec.ny.gov/docs/materials_minerals_pdf/batterylaw.pdf. Accessed 24 May (2018).

Google Scholar

[104] The Office of the Revisor of Statutes: 115A.9157: Rechargeable batteries and products. https://www.revisor.mn.gov/statutes/?id=115A.9157. Accessed 24 May (2018).

Google Scholar

[105] Hanisch C, Diekmann J, Stieger A et al. (2015): A recycling of lithium-ion batteries: In: Boehm RF, Yang H, Yan J (eds) Handbook of clean energy systems, 6th edn. John Wiley & Sons Inc, Chichester, West Sussex, p.2865–2888.

DOI: 10.1002/9781118991978.hces221

Google Scholar

[106] Vezzini A (2013): Manufacturers, materials and recycling technologies: In: Pistoia G (ed) Lithium-Ion Batteries: Advances and Applications. Elsevier, Amsterdam, p.529–551.

DOI: 10.1016/b978-0-444-59513-3.00023-6

Google Scholar

[107] Bundesanstalt für Geowissenschaften und Rohstoffe: Volatilitätsmonitor April 2018: http://archive.today/ks9p4. Accessed 28 Jun (2018).

Google Scholar

[108] Bundesanstalt für Geowissenschaften und Rohstoffe: Rohstoffrisikobewertung - Lithium: http://archive.today/PjMST. Accessed 28 Jun (2018).

Google Scholar

[109] Tytgat J: Li-ion and NiMH battery recycling at Umicore: Strategic choices. http://archive.today/atKa7. Accessed 24 May (2018).

Google Scholar

[110] Umicore: Our recycling process: http://pmr.umicore.com/en/batteries/our-recycling-process. Accessed 24 May (2018).

Google Scholar

[111] Treffer F: Entwicklung eines realisierbaren Recyclingkonzeptes für die Hochleistungsbatterien zukünftiger Elektrofahrzeuge: Gemeinsamer Abschlussbericht des Konsortiums. http://edok01.tib.uni-hannover.de/edoks/e01fb12/727409611.pdf. Accessed 24 May (2018).

Google Scholar

[112] Tytgat J, Treffer F (2011): Recycling of Li-ion and NiMH batteries from electric vehicles: Technology and impact on life cycle: In: Proceedings of the Belgian Platform on Electrical Vehicles.

Google Scholar

[113] Elwert T, Goldmann D, Schirmer T et al. (2012): Recycling of lithium ion traction batteries - The LiBRi project: In: Weber L, Stiftner R (eds) Raw materials are the future, p.575–603.

Google Scholar

[114] Buchert M (2011): Verbundprojekt: Entwicklung eines realisierbaren Recyclingkonzepts für die Hochleistungsbatterien zukünftiger Elektrofahrzeuge - LiBRi : Teilprojekt: LCA der Recyclingverfahren : Endbericht. Technische Informationsbibliothek u. Universitätsbibliothek.

Google Scholar

[115] Brouwer S, Heulens J, van Horebreek D (2014): Process for recycling Li-ion batteries:(WO2014EP75500 20141125).

Google Scholar

[116] Retriev Technologies: Lithium Ion: http://www.retrievtech.com/recycling/lithium-ion. Accessed 01 Feb (2018).

Google Scholar

[117] Hanisch C, Haselrieder W, Kwade A (2012): Method for reclaiming active material from a galvanic cell, and an active material separation installation, particularly an active metal separation installation:(WO002013023640A1).

Google Scholar

[118] GEM High Tech Co. Ltd.: Waste batteries, waste cobalt nickel tungsten rare metal resources recycling industry chain: http://www.gem.com.cn/feijiudianchiheniefeiliao/. Accessed 01 Feb (2018).

Google Scholar

[119] Wang Q, Yang L, Yanhong C et al. (2011): A method for treating lithium iron phosphate cathode material for waste electric power lithium batteries:(CN000102956936A).

Google Scholar

[120] Rothermel S, Nowak S (2016): LithoRec II - Recycling von Lithium-Ionen-Batterien: Abschlussbericht zu LithoRec II : Berichtszeitraum: 01.07.2012 bis 31.12.2015. Westfälische Wilhelms-Universität Münster.

Google Scholar