[1]
Kamp, I. The influence of car-seat design on its character experience. Applied Ergonomics, 2012, Vol. 43, Issue 2, pp.329-335, ISSN 0003-6870.
DOI: 10.1016/j.apergo.2011.06.008
Google Scholar
[2]
Griffin, M.J. Handbook of Human vibration. University Soupthamton, UK, MCSLimited, 2004, ISBN 0-12-303041-2.
Google Scholar
[3]
Fahy, R. and Thompson, D. Fundamentals of Sound and Vibration. CRC Press, 2015, ISBN 9780415562102.
Google Scholar
[4]
Valentini, P. Modeling human spine using dynamic spline approach for vibrational simulation. Journal of Sound and Vibration, 2012, Vol. 331, Issue 26, pp.5895-5909, ISSN 0022-460X.
DOI: 10.1016/j.jsv.2012.07.039
Google Scholar
[5]
Petru, M. and Novak, O. Mechanical properties measurement and comparison of polyurethane foam substitute. ACC Journal, 2010, Vol. 16, Issue A, ISSN 1803-9782.
Google Scholar
[6]
Szycher, M. Szycher's handbook of polyurethanes. CRC Press, 2017, ISBN 9781138075733.
Google Scholar
[7]
ISO-2439 Flexible cellular polymeric materials - Determination of hardness (indentation technique). Geneva, ISO copyright office, (2008).
Google Scholar
[8]
Nurul, H. Structure property performance of natural palm olein polyol in the viscoelastic polyurethane foam. Journal of Cellular plastics, 2016, Vol 53, Issue 1, pp.65-81, ISSN 1530-7999.
DOI: 10.1177/0021955x16639031
Google Scholar
[9]
Chang, L. et al. Effect of mixing conditions on the morphology and performance of fiber-reinforced polyurethane foam. Journal of Cellular Plastics, 2015, Vol. 51, Issue 1, pp.103-119, ISSN 1530-7999.
DOI: 10.1177/0021955x14545138
Google Scholar
[10]
Desroches, M. et al. From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polymer Reviews, 2012, Vol 52, Issue 1, pp.38-79, ISSN 1558-372.
DOI: 10.1080/15583724.2011.640443
Google Scholar
[11]
Lligadas, G. et al. Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. Journal of Polymer Science Part A: Polymer Chemistry, 2005, Vol 44, Issue 1, ISSN 1099-0518.
DOI: 10.1002/pola.21201
Google Scholar
[12]
Gu, R. et al. A feasibility study of polyurethane composite foam with added hardwood pulp. Industrial Crops and Products, 2013, Vol. 42, pp.273-279, ISSN 0926-6690.
DOI: 10.1016/j.indcrop.2012.06.006
Google Scholar
[13]
Shan, C.W. et al. Improved Vibration Characteristics of Flexible Polyurethane foam via Composite Formation. International Journal of Automobive and Mechanical Engineering, 2013, Vol 7, pp.1031-1042, ISSN 2229-8649.
DOI: 10.15282/ijame.7.2012.19.0084
Google Scholar
[14]
Banik, I. and Sain, M.M. Water-blown soy polyol based polyurethane foams modified by cellulosic materials obtained from different sources. Journal of Applied Polymer Science, 2009, Vol 112, Issue 4, pp.1974-1987, ISSN 1097-4628.
DOI: 10.1002/app.29570
Google Scholar
[15]
Chiang, C.C. Synthesis of green polyurethane foam using waste glycerol and hay fibers. California State University, Long Beach, (2012).
Google Scholar
[16]
Srb, P. and Petru, M. Numerical simulation of reinforced polyurethane foam. Experimental Stress Analysis - 56th International Scientific Conference, EAN 2018 - Conference Proceedings, pp.381-386, ISBN 978-802704062-9.
Google Scholar
[17]
Hibbit et al. ABAQUS/CAE 6.13 User's Manual, Dassault Systemes, (2013).
Google Scholar
[18]
Siranosian, A. and Stevens R. Developing an Abaqus *HYPERFOAM Model for M9747 (4003047) Cellular Silicone Foam. Report AC52-06NA25396, Los Alamos National Lab, (2012).
DOI: 10.2172/1039318
Google Scholar