[1]
A. J. Peacock and A. Calhoun, Polymer Chemistry - Properties and Applications, Hanser Publications: Germany, (2006).
Google Scholar
[2]
R.B. Miller, Characteristics and Availability of Commercially Important Woods in Wood Handbook - Wood as an Engineering Material, Forest Products Laboratory, U.S. Department of Agriculture, USA, (2001).
Google Scholar
[3]
P.M. Smith and M. P. Wolcott, Opportunities for wood/natural fiber-plastic composites in residential and industrial applications, J. Forest. Prod. 56 (2006) 4-11.
Google Scholar
[4]
K. H. J. Buschov, R. W. Cahn, M. C. Flemings, et al., Encyklopedia of Materials - Science and Technology, Elsevier, USA, (2001).
Google Scholar
[5]
Directive 2008/98/EC on waste (Waste Framework Directive); (2008).
Google Scholar
[6]
J. Brydson, Plastic Materials, Elsevier, USA, (1999).
Google Scholar
[7]
C. Mair and T. Calafut, Polypropylene - The Definitive User´s Guide and Handbook, William Andrew Publishing/Plastics Design Library, USA, (1998).
Google Scholar
[8]
A. Nourbakhsh, A. Karegarfard, A. Ashori and A. Nourbakhsh, Effects of particle size and coupling agent concentration on mechanical properties of particulate-filled polymer composites, J. Thermo. Comp. Mat. 23 (2010) 169-174.
DOI: 10.1177/0892705709340962
Google Scholar
[9]
S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund and M. P. Wolcott, Effects of processing method and fiber size on the structure and properties of wood-plastic composites, J. Comp.: Part A 40 (2009) 80-85.
DOI: 10.1016/j.compositesa.2008.10.004
Google Scholar
[10]
Y. Zhang, S. Y. Zhang and P. Choi, Effects of wood fiber content and coupling agent content on tensile properties of wood fiber polyethylene, J. Holz Roh Werkst 66 (2008) 267-274.
DOI: 10.1007/s00107-008-0246-4
Google Scholar
[11]
H. S. Yang, M.P. Wolcott, H. S. Kim, S. Kim, and H. J. Kim, J. Compos. Struct. 79 (2007) 369-375.
Google Scholar
[12]
P. Kuo, S. Wang, J. Chen, H. Hsueh, and M. Tsai, Effects of materials compositions on the mechanical properties of wood-plastic composites manufactured by injection molding, J. Mat. D. 30 (2009) 3489-3496.
DOI: 10.1016/j.matdes.2009.03.012
Google Scholar
[13]
E. Soury, A.H. Behravesh, E. Rouhani Esfahani and A. Zolfaghari, Design, optimization and manufacturing of wood-plastic composite pallet, J. Mater. Des. 30 (2009) 4183-4191.
DOI: 10.1016/j.matdes.2009.04.035
Google Scholar
[14]
K.L. Yam, B.K. Gogoi, C.C. Lai and S. E. Selke, Composites from compounding wood fibers with recycled high density polyethylene, J. Pol. Eng. Sci. 30 (1990) 693-699.
DOI: 10.1002/pen.760301109
Google Scholar
[15]
L. Carrino, S. Ciliberto, G. Giorleo, and U. Prisco, U., Effect of filler content and temperature on steady-state shear flow of wood/high density polyethylene composites, J. Pol. Comp. 32 (2011) 796-809.
DOI: 10.1002/pc.21101
Google Scholar
[16]
F. Godard, M. Vincent, J. F. Agassant and B. Vergnes, Rheological behaviour and mechanical properties of sawdust/polyethylene composites, J. App. Pol. Sci. 112 (2009) 2559-2566.
DOI: 10.1002/app.29847
Google Scholar
[17]
F. Hugot and G. Cazaurang, Mechanical properties of an extruded wood plastic composite, Mec. Ind. J. 10 (2009), 519-524.
DOI: 10.1051/meca/2010010
Google Scholar
[18]
S. Y. Leu, T. H. Yang, S. F. Lo and T. H. Yang, Optimized material composition to improve the physical and mechanical properties of extruded wood-plastic composites (WPCs), J. Con. Build. Mat. 29 (2012) 120-127.
DOI: 10.1016/j.conbuildmat.2011.09.013
Google Scholar
[19]
L. P. La Mantia and M. Morreale, Green composites: A brief review, J. Com.: Part A 42 (2011), 579-588.
DOI: 10.1016/j.compositesa.2011.01.017
Google Scholar
[20]
J. Svetlík and P. Demeč, Principles of modular architecture in the manufacturing technology, J. App. Mech. Mat. 309 (2013), 105-112.
DOI: 10.4028/www.scientific.net/amm.309.105
Google Scholar
[21]
N. Nourbakhsh, and A. Ashori, Fundamental studies on wood-plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite, J. Pol. Com. 29 (2008) 569-573.
DOI: 10.1002/pc.20578
Google Scholar
[22]
P. Kuo, S. Wang, J. Chen, H. Hsueh, and M. Tsai, Effects of materials compositions on the mechanical properties of wood-plastic composites manufactured by injection molding, J. Mat. D. 30 (2009) 3489-3496.
DOI: 10.1016/j.matdes.2009.03.012
Google Scholar
[23]
D. Chung, Composite Materials: Science and Applications, 2. ed., Springer, London, UK, (2010).
Google Scholar
[24]
M. El Messiry and R. El Deeb, Analysis of the wheat straw/flax fiber reinforced polymer hybrid composites, J. App. Mech. Eng. 5, (2016), 1-5.
Google Scholar
[25]
V. K. Thakur, M. K. Thakur and M. R. Kessler, Handbook of composites from renewable materials, design and manufacturing, Scrivener publishers, Wiley, USA, (2017).
Google Scholar
[26]
T. Stejskal, M. Štofa, J. Svetlík, M. Pituk and A. Žilinský, Production aspects affecting the final precision machining of advanced materials, J. Key Eng. Mat. 756 (2017), 155-161.
DOI: 10.4028/www.scientific.net/kem.756.155
Google Scholar
[27]
EN ISO 17827-1:2016, Solid biofuels - Determination of particle size distribution for uncompressed fuels - Part 1: Oscillating screen method using sieves with apertures of 3,15 mm and above, European Committee for Standardization, Brussels, Belgium, (2016).
DOI: 10.3403/30275870u
Google Scholar
[28]
EN ISO 18134-2:2017, Solid biofuels - Determination of moisture content. Oven dry method. Part 2: Total moisture. Simplified method, European Committee for Standardization, Brussels, Belgium, (2017).
DOI: 10.3403/30198053u
Google Scholar
[29]
EN ISO 17828:2015, Solid biofuels - determination of bulk density, European Committee for Standardization, Brussels, Belgium, (2015).
Google Scholar
[30]
P. Križan, J. Beniak, M. Matúš, Ľ. Šooš and Ľ. Kolláth, Research of plastic and wood raw wastes recovery, Ad. Mat. Let. 8 (2017) 983-986.
Google Scholar
[31]
P. Križan, M. Matúš, J. Beniak and S. Svátek, Mathematical modelling when determining the relationship between material parameters and mechanical properties of waste raw materials based wood-plastic composites, J. Mech. Prod. Eng. 6 (2018) 1-6.
DOI: 10.4028/www.scientific.net/msf.994.152
Google Scholar
[32]
P. Križan, J. Beniak, Ľ. Šooš, Ľ. Kolláth and M. Matúš, Experimental research of mechanical properties and parameters of waste raw materials based wood-plastic composites, in: American Advanced Materials Congress: Proceedings and abstracts book. Miami, USA, (2016).
DOI: 10.4028/www.scientific.net/msf.994.152
Google Scholar
[33]
STN EN ISO 527-3, Plastics. Determination of Tensile Properties. Part 3: Test Conditions for Films and Sheets, Bratislava, Slovakia, (1997).
Google Scholar
[34]
K. Turcsek: Recovery of waste raw materials into the form of composites by injection technology, Diploma work, ÚSETM SjF STU Bratislava, Thesis supervisor: P. Križan, p.89, (2018). (in Slovak).
Google Scholar
[35]
D. Bilčík: Effect of raw material parameters of waste based composites on injection technology, Diploma work, ÚSETM SjF STU Bratislava, Thesis supervisor: P. Križan, p.70, (2019). (in Slovak).
Google Scholar