Spin Coated CuO with Different Additives (PEG) Value Thin Film: Physical, Structural, Optical and Electrical Characteristics of CuO/PEG

Article Preview

Abstract:

This study presents an investigation on copper oxide (CuO) composited with polyethylene glycol (PEG) thin film. The main objective for this compositing thin film is to explore and determine the characteristic of the thin film when the value of PEG is varied. In this study, PEG plays a role as phase change material (PCM), where this type of material has the capability to absorb and release heat based on its surrounding condition. Due to this characteristic, the amount of PEG is vary from 0.5, 1.0, 1.5 and 2.0 ml to confirm its influence towards CuO thin film. As for comparison, CuO thin film without PEG is also fabricated. Both of the materials used were prepared using sol-gel route and deposited onto indium tin oxide (ITO) substrate using spin coating method. The influences of the PEG values on CuO thin film were investigated using field emission scanning electron microscope (FESEM), x-ray diffraction (XRD), ultra-violet visible microscope (UV-Vis), and current-voltage (IV) measurement. Based on the investigation conducted, the characteristics of CuO thin film produced in this study are affected with the different value of PEG.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

43-51

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Busch, Early history of the physics and chemistry of semiconductors - from doubts to fact in a hundred years,, Eur. J. Phys., vol. 10, p.254–264, (1989).

DOI: 10.1088/0143-0807/10/4/002

Google Scholar

[2] J. C. H. Chen et al., Fabrication and characterisation of gallium arsenide ambipolar quantum point contacts,, Appl. Phys. Lett., vol. 106, no. 18, p.183504, (2015).

DOI: 10.1063/1.4918934

Google Scholar

[3] Y. T. Kwon, S. O. Kang, J. A. Cheon, Y. Song, J. J. Lee, and Y. H. Choa, Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties,, Appl. Surf. Sci., vol. 415, p.2–7, (2017).

DOI: 10.1016/j.apsusc.2016.10.159

Google Scholar

[4] H.-H. Kim, Y.-S. Lee, D. Chung, and B.-J. Kim, Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites,, Coatings, vol. 7, no. 8, p.121, (2017).

DOI: 10.3390/coatings7080121

Google Scholar

[5] S. Ratan, C. Kumar, A. Kumar, D. K. Jarwal, A. K. Mishra, and S. Jit, Fabrication and characterization of titanium dioxide based Pd/TiO2/Si MOS sensor for hydrogen gas,, IEEE Sens. J., vol. 18, no. 10, p.3952–3959, (2018).

DOI: 10.1109/jsen.2018.2819805

Google Scholar

[6] F. K. Mugwanga, P. K. Karimi, W. K. Njoroge, O. Omayio, and S. M. Waita, Optical characterization of Copper Oxide thin films prepared by reactive dc magnetron sputtering for solar cell applications,, Int. J. Thin Film. Sci. Technol., vol. 2, no. 1, p.12–24, (2013).

Google Scholar

[7] A. Buljan, M. Llunell, E. Ruiz, and P. Alemany, Color and conductivity in Cu2O and CuAlO2: A theoretical analysis of d10···d10 interactions in solid-state compounds,, Chem. Mater., vol. 13, no. 2, p.338–344, (2001).

DOI: 10.1002/chin.200124002

Google Scholar

[8] A.S.M. Sayem Rahman, M.A. Islam, and K.M. Shorowordi, Electrodeposition and characterization of copper oxide thin films for solar cell applications,, Procedia Eng., vol. 105, no. Icte 2014, p.679–685, (2015).

DOI: 10.1016/j.proeng.2015.05.048

Google Scholar

[9] M. Dahrul, H. Alatas, and Irzaman, Preparation and Optical Properties Study of CuO thin Film as Applied Solar Cell on LAPAN-IPB Satellite,, Procedia Environ. Sci., vol. 33, p.661–667, (2016).

DOI: 10.1016/j.proenv.2016.03.121

Google Scholar

[10] T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, and J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties,, Appl. Surf. Sci., vol. 311, p.602–608, (2014).

DOI: 10.1016/j.apsusc.2014.05.116

Google Scholar

[11] D. Santos-Cruz, S. A. Mayén-Hernández, F. de Moure-Flores, J. Campos-Álvarez, M. Pal, and J. Santos-Cruz, CuOXthin films by direct oxidation of Cu films deposited by physical vapor deposition,, Results Phys., vol. 7, p.4140–4144, (2017).

DOI: 10.1016/j.rinp.2017.10.022

Google Scholar

[12] M. Dhaouadi et al., Physical Properties of Copper Oxide Thin Films Prepared by Sol – Gel Spin – Coating Method,, Am. J. Phys. Appl., vol. 6, no. 2, p.43–50, (2018).

DOI: 10.11648/j.ajpa.20180602.13

Google Scholar

[13] B. Roy et al., Preparation and characterization of sol-gel derived copper-strontium-oxide thin films,, Thin Solid Films, vol. 516, no. 12, p.4093–4101, (2008).

DOI: 10.1016/j.tsf.2007.10.002

Google Scholar

[14] K. Kajihara, K. Nakanishi, K. Tanaka, K. Hirao, and N. Soga, Preparation of Macroporous Titania Films by a Sol – Gel Dip-Coating,, vol. 76, p.2670–2676, (1998).

DOI: 10.1111/j.1151-2916.1998.tb02675.x

Google Scholar

[15] A. Matsuda, T. Kanzaki, K. Tadanaga, M. Tatsumisago, and T. Minami, Proton conductivities of sol-gel derived phosphosilicate gels in medium temperature range with low humidity,, Solid State Ionics, vol. 154–155, p.687–692, (2002).

DOI: 10.1016/s0167-2738(02)00518-0

Google Scholar

[16] T. Thirugnanam, Effect of polymers (PEG and PVP) on sol-gel synthesis of microsized zinc oxide,, J. Nanomater., vol. 2013, (2013).

DOI: 10.1155/2013/362175

Google Scholar

[17] P. H. Biwole, P. Eclache, and F. Kuznik, Phase-change materials to improve solar panel's performance,, Energy Build., vol. 62, p.59–67, (2013).

DOI: 10.1016/j.enbuild.2013.02.059

Google Scholar

[18] A. Doyan, Preparation and Characterization of Nanostructured CuO Thin Films using Sol-gel Dip Coating Preparation and Characterization of Nanostructured CuO Thin Films using Sol-gel Dip Coating.,.

DOI: 10.1088/1757-899x/99/1/012007

Google Scholar

[19] T.K. Haneef, K. Kumari, C.K. Mukhopadhyay, B.P. Rao, and T. Jayakumar, Influence of fly ash and curing on cracking behavior of concrete by acoustic emission technique,, Constr. Build. Mater., vol. 44, p.342–350, (2013).

DOI: 10.1016/j.conbuildmat.2013.03.041

Google Scholar

[20] S. Khodja et al., Effects of stabilizer ratio on structural, morphological, optical and waveguide properties of ZnO nano-structured thin films by a sol–gel process,, SUPERLATTICES Microstruct., (2014).

DOI: 10.1016/j.spmi.2014.08.010

Google Scholar

[21] I.Z. Luna, L.N. Hilary, A.M.S. Chowdhury, M.A. Gafur, N. Khan, and R.A. Khan, Preparation and Characterization of Copper Oxide Nanoparticles Synthesized via Chemical Precipitation Method,, p.1–8, (2015).

DOI: 10.4236/oalib.1101409

Google Scholar

[22] E. C. S. Transactions and T. E. Society, 1 , 2* , 3,, vol. 45, no. 24, p.73–78, (2013).

Google Scholar

[23] Z. Bazhan, F.E. Ghodsi, and J. Mazloom, Effect of stabilizer on optical and structural properties of MgO thin films prepared by sol – gel method,, vol. 36, no. 5, p.899–905, (2013).

DOI: 10.1007/s12034-013-0554-0

Google Scholar

[24] D.S.C. Halin et al., Characterization of Cuprous Oxide Thin Films Prepared by Sol-Gel Spin Coating Technique with Different Additives,, vol. 755, p.1141–1145, (2015).

DOI: 10.4028/www.scientific.net/amm.754-755.1141

Google Scholar

[25] T. Wang, Y. Qi, J. Xu, X. Hu, and P. Chen, Effects of poly ( ethylene glycol ) on electrical conductivity ( styrenesulfonic acid ) film,, vol. 250, p.188–194, (2005).

DOI: 10.1016/j.apsusc.2004.12.051

Google Scholar