[1]
Q.K. Pan, L. Wang. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm, J. The International Journal of Advanced Manufacturing Technology. (2007).
DOI: 10.1007/s00170-007-1252-0
Google Scholar
[2]
P.J. Kalczynski, J. Kamburowski. A heuristic for minimizing the makespan in no-idle permutation flow shop, J. Comput Ind Eng. 49 ( 2005) 146-154.
DOI: 10.1016/j.cie.2005.05.002
Google Scholar
[3]
D. Baraz, G. Mosheiov. A note on a greedy heuristic for the flow-shop makespan minimization with no machine idle-time, J. Eur J Oper Res. (2007).
DOI: 10.1016/j.ejor.2006.11.025
Google Scholar
[4]
P. Baptiste, K.H. Lee. A branch and bound algorithm for the F|no-idle|Cmax, J. Proceedings of the international conference on industrial engineering and production management (IEPM'1997), Lyon. 1 (1997) 429-438.
Google Scholar
[5]
N.E.H. Saadani, P. Baptisete, M. Moalla. The simple F2//Cmax with forbidden tasks in first or last position: A problem more complex than it seems, J. Eur J Oper Res. 161 (2005) 21-31.
DOI: 10.1016/j.ejor.2003.08.031
Google Scholar
[6]
Q.K. Pan, L. Wang. A novel differential evolution algorithm for the no-idle permutation flow shop scheduling problems, J. European Journal of Industrial Engineering. 2(3) (2008) 279-297.
DOI: 10.1504/ejie.2008.017687
Google Scholar
[7]
W. Lei, Q.K. Pan, etc. Harmony search algorithms for no-idle flow shop scheduling problems, J. Computer Integrated Manufacturing Systems. 15(10)( 2009) 1960-1967.
Google Scholar
[8]
Y.M. Wang, J.Z Ji, Q.k. Pan. An Algorithm Based on Discrete Shuffled Frog Leaping for No_ Idle Permutation Flow Shop Scheduling Problem, J. Journal of Beijing University of Technolodgy, 1(36) ( 2010) 124-130.
DOI: 10.1109/smc.2013.479
Google Scholar
[9]
M. Eusuff, K. Lansey, F. Pasha. Shuffled frog_leaping algorithm : a memetic meta_heuristic for discrete optimization,J. Engineering Optimization, 38(3) (2005) 129-154.
DOI: 10.1080/03052150500384759
Google Scholar
[10]
M.M. Eusuff, K.E. Lansey. Optimization of water distribution network design using the shuffled frog leaping algorithm,J. Water Resour Plan Manage. 129(3) (2003) 210-225.
DOI: 10.1061/(asce)0733-9496(2003)129:3(210)
Google Scholar
[11]
S. Y. Liong, M. Atiquzzaman. Optimal design of water distribution network using shuffled complex evolution,J. Journal of The Institution of Engineers, Singapore. 44(1)( 2004) 93-107.
Google Scholar
[12]
Emad Elbeltagi,Tarek Hegazy,Donald Grierson. Comparison among five evolutionary-based optimization algorithm,J. Advanced Engineering Informatics. 19(1) (2005) 43-53.
DOI: 10.1016/j.aei.2005.01.004
Google Scholar
[13]
A. Rahimi-Vahed, A. H. Mirzaei. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem,J. Computer&Industrial Engineering. (2007).
DOI: 10.1016/j.cie.2007.06.007
Google Scholar
[14]
B. Amiri, M. Fathian, A. Maroosi. Application of shuffled frog-leaping algorithm on clustering, J. Appl. Math. Comput. ( 2007).
DOI: 10.1016/j.amc.2007.04.091
Google Scholar
[15]
R.V. Alireza , A.H. Mirzaei. Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm,J. soft comput ( 2007).
DOI: 10.1007/s00500-007-0210-y
Google Scholar
[16]
L. Wang. Intelligence optimization algorithm with applications. Tsinghua Univ Press, Beijing, China. 2001,10.
Google Scholar
[17]
M.Nawaz, E.E. Enscore Jr, I. Ham. A heuristic algorithm for the m-machine, n-job flow shop sequencing problem, J. OMEGA. 11(1983) 91-95.
DOI: 10.1016/0305-0483(83)90088-9
Google Scholar