A Hybrid Shuffled Frog Leaping Algorithm for Solving No_Idle Permutation Flow Shop Scheduling Problems

Article Preview

Abstract:

This paper presents a novel hybrid shuffled frog-leaping algorithm (HSFLA) for solving the no_idle permutation flow shop scheduling problems(NIFS) with the criterion to minimize the maximum completion time( makespan). First, the algorithm employs insert- neighborhood-based local search to enhance the searching ability. Second, it adopts roulette wheel selection operator to generate the global best frog in the early stage of the evolution which can expand the searching solution space. The experimental results show that the proposed algorithm is effective and efficient for different scale benchmarks of NIFS .

You have full access to the following eBook

Info:

[1] Q.K. Pan, L. Wang. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm, J. The International Journal of Advanced Manufacturing Technology. (2007).

DOI: 10.1007/s00170-007-1252-0

Google Scholar

[2] P.J. Kalczynski, J. Kamburowski. A heuristic for minimizing the makespan in no-idle permutation flow shop, J. Comput Ind Eng. 49 ( 2005) 146-154.

DOI: 10.1016/j.cie.2005.05.002

Google Scholar

[3] D. Baraz, G. Mosheiov. A note on a greedy heuristic for the flow-shop makespan minimization with no machine idle-time, J. Eur J Oper Res. (2007).

DOI: 10.1016/j.ejor.2006.11.025

Google Scholar

[4] P. Baptiste, K.H. Lee. A branch and bound algorithm for the F|no-idle|Cmax, J. Proceedings of the international conference on industrial engineering and production management (IEPM'1997), Lyon. 1 (1997) 429-438.

Google Scholar

[5] N.E.H. Saadani, P. Baptisete, M. Moalla. The simple F2//Cmax with forbidden tasks in first or last position: A problem more complex than it seems, J. Eur J Oper Res. 161 (2005) 21-31.

DOI: 10.1016/j.ejor.2003.08.031

Google Scholar

[6] Q.K. Pan, L. Wang. A novel differential evolution algorithm for the no-idle permutation flow shop scheduling problems, J. European Journal of Industrial Engineering. 2(3) (2008) 279-297.

DOI: 10.1504/ejie.2008.017687

Google Scholar

[7] W. Lei, Q.K. Pan, etc. Harmony search algorithms for no-idle flow shop scheduling problems, J. Computer Integrated Manufacturing Systems. 15(10)( 2009) 1960-1967.

Google Scholar

[8] Y.M. Wang, J.Z Ji, Q.k. Pan. An Algorithm Based on Discrete Shuffled Frog Leaping for No_ Idle Permutation Flow Shop Scheduling Problem, J. Journal of Beijing University of Technolodgy, 1(36) ( 2010) 124-130.

DOI: 10.1109/smc.2013.479

Google Scholar

[9] M. Eusuff, K. Lansey, F. Pasha. Shuffled frog_leaping algorithm : a memetic meta_heuristic for discrete optimization,J. Engineering Optimization, 38(3) (2005) 129-154.

DOI: 10.1080/03052150500384759

Google Scholar

[10] M.M. Eusuff, K.E. Lansey. Optimization of water distribution network design using the shuffled frog leaping algorithm,J. Water Resour Plan Manage. 129(3) (2003) 210-225.

DOI: 10.1061/(asce)0733-9496(2003)129:3(210)

Google Scholar

[11] S. Y. Liong, M. Atiquzzaman. Optimal design of water distribution network using shuffled complex evolution,J. Journal of The Institution of Engineers, Singapore. 44(1)( 2004) 93-107.

Google Scholar

[12] Emad Elbeltagi,Tarek Hegazy,Donald Grierson. Comparison among five evolutionary-based optimization algorithm,J. Advanced Engineering Informatics. 19(1) (2005) 43-53.

DOI: 10.1016/j.aei.2005.01.004

Google Scholar

[13] A. Rahimi-Vahed, A. H. Mirzaei. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem,J. Computer&Industrial Engineering. (2007).

DOI: 10.1016/j.cie.2007.06.007

Google Scholar

[14] B. Amiri, M. Fathian, A. Maroosi. Application of shuffled frog-leaping algorithm on clustering, J. Appl. Math. Comput. ( 2007).

DOI: 10.1016/j.amc.2007.04.091

Google Scholar

[15] R.V. Alireza , A.H. Mirzaei. Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm,J. soft comput ( 2007).

DOI: 10.1007/s00500-007-0210-y

Google Scholar

[16] L. Wang. Intelligence optimization algorithm with applications. Tsinghua Univ Press, Beijing, China. 2001,10.

Google Scholar

[17] M.Nawaz, E.E. Enscore Jr, I. Ham. A heuristic algorithm for the m-machine, n-job flow shop sequencing problem, J. OMEGA. 11(1983) 91-95.

DOI: 10.1016/0305-0483(83)90088-9

Google Scholar