A New Approach for Solving Optimal Nonlinear Control Problems Using Decriminalization and Rationalized Haar Functions

Abstract:

Article Preview

This paper presents a numerical method based on quasilinearization and rationalized Haar functions for solving nonlinear optimal control problems including terminal state constraints, state and control inequality constraints. The optimal control problem is converted into a sequence of quadratic programming problems. The rationalized Haar functions with unknown coefficients are used to approximate the control variables and the derivative of the state variables. By adding artificial controls, the number of state and control variables is equal. Then the quasilinearization method is used to change the nonlinear optimal control problems with a sequence of constrained linear-quadratic optimal control problems. To show the effectiveness of the proposed method, the simulation results of two constrained nonlinear optimal control problems are presented.

Info:

Periodical:

Edited by:

Elwin Mao and Linli Xu

Pages:

387-394

DOI:

10.4028/www.scientific.net/AEF.1.387

Citation:

Z. Y. Han and S. R. Li, "A New Approach for Solving Optimal Nonlinear Control Problems Using Decriminalization and Rationalized Haar Functions", Advanced Engineering Forum, Vol. 1, pp. 387-394, 2011

Online since:

September 2011

Export:

[1] C. F. Chen, C. H. Hsiao, A walsh series direct method for solving variational problems, Journal of the Franklin Institute 300 (4) (1975) 265 –280.

DOI: 10.1016/0016-0032(75)90199-4

[2] M. Razzaghi, S. Yousefi, Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation 53 (3) (2000) 185– 192.

DOI: 10.1016/s0378-4754(00)00170-1

[3] I. -R. Horng, J. -H. Chou, Shifted chebyshev direct method for solving variational problems, International Journal of Systems Science 16 (7) (1985) 855–861.

DOI: 10.1080/00207728508926718

[4] M. Razzaghi, M. Razzaghi, A. Arabshahi, Solutions of convolution integral and fredholm integral equations via double flourier series, Applied Mathematics and Computation 40 (3) (1990) 215 – 224.

DOI: 10.1016/s0096-3003(08)80003-3

[5] H. Jaddu, Direct solution of nonlinear optimal control problems using quasilinearization and chebyshev polynomials, Journal of the Franklin Institute 339 (4-5) (2002) 479 – 498.

DOI: 10.1016/s0016-0032(02)00028-5

[6] M. Razzaghi, G. N. Elnagar, Linear quadratic optimal control problems via shifted legendre state parameterization, International Journal of Systems Science 25 (1994) 393–399.

DOI: 10.1080/00207729408928967

[7] M. Razzaghi, Y. Ordokhani, Solution of nonlinear volterra-hammerstein integral equations via rationalized haar functions, Mathematical Problems in Engineering 7 (2) (2001) 205–219.

DOI: 10.1155/s1024123x01001612

[8] M. Ohkita, Y. Kobayashi, An application of rationalized haar functions to solution of linear deferential equations 33 (9) (1986) 853–862.

DOI: 10.1109/tcs.1986.1086019

[9] M. Razzaghi, Y. Ordokhani, Solution of deferential equations via rationalized haar functions, Mathematics and Computers in Simulation 56 (3) (2001) 235–246.

DOI: 10.1016/s0378-4754(01)00278-6

[10] V. Yen, M. Nagurka, Optimal control of linearly constrained linear systems via state parameterization, Optimal Control Appl. Mehods 25(1992) 393–399.

DOI: 10.1002/oca.4660130206

[11] D. Kleinman, T. Fortmann, M. Athans, B. Bolt, Newman, On the design of linear systems with piecewise-constant feedback gains, IEEE Trans. Automat. Contr. 13 (1968) 354–361.

DOI: 10.1109/tac.1968.1098926

[12] J. Vlassenbroeck, A chebyshev polynomial method for optimal control with state constraints, Automatica 24 (4) (1988) 499 – 506.

DOI: 10.1016/0005-1098(88)90094-5

[13] V. Yen, M. Nagurka, Linear quadratic optimal control via fourier-based state parameterization, Journal of Dynamic Systems, Measurement, and Control 113 (2) (1991) 206–215.

DOI: 10.1115/1.2896367

In order to see related information, you need to Login.