Design and Fluid Structure Interaction Analysis of a Micro-Channel as Fluid Sensor

Article Preview

Abstract:

In this proposed work, the design and analysis of a flow sensor to be integrated into a micro-channel is presented. A finite element analysis is carried out to simulate fluid-structure interaction and estimate cantilever deflection under different fluidic flows at constant flow rate. The design of device is based on the determination of geometrical dimensions. A mathematical analysis describing the fluid mechanics and their interaction with the beam is also proposed. The mathematical model is done using finite-element analysis, and a complete formulation for design analysis is determined. Finite element method based Comsol Multiphysics simulations are used to optimize the design in order to determine the fluid velocities after interaction with the free end of the micro-cantilever beam. The device is successfully designed for sensing different fluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-56

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Dijkstra, M. J. Boer, J. W. Berenschot, T. S. Lammerink, R. J. Wiegerink, M. Elwenspoek, Miniaturized flow sensor with planar integrated sensor structures on semicircular surface channels, in Proc. IEEE Micro Electro Mech. Syst. Conf. (2007).

DOI: 10.1109/memsys.2007.4433031

Google Scholar

[2] S. Arya, S. Khan, A. Vaid, H. Kour, P. Lehana, Microfluidic Mechanics and Applications: a Review, J. Nano Electron. Phy. 5 (2013) 04047-04058.

Google Scholar

[3] A. Qualtieri, F. Rizzi, M.T. Todaro, A. Passaseo, R. Cingolani, M. De Vittorio, Stress-driven AlN cantilever-based flow sensor for fish lateral line system, Microelectron. Engg. 88 (2011) 2376-2378.

DOI: 10.1016/j.mee.2011.02.091

Google Scholar

[4] A. Çubukçua, G. A. Urbana, Simulation and fabrication of a 2D-flow sensor for simultaneous fluid characterization, Procedia Chemistry, 1 (2009) 887-890.

DOI: 10.1016/j.proche.2009.07.221

Google Scholar

[5] P. Zu, C. C. Chan, W. S. Lew, L. Hu, Y. Jin, H. F. Liew, L. H. Chen, W. C. Wong, X. Dong, Temperature insensitive magnetic Field Sensor Based on Nanoparticle Magnetic Fluid and Photonic Crystal Fiber, IEEE Photonics Journal, 4 (2012) 491-498.

DOI: 10.1109/jphot.2012.2192473

Google Scholar

[6] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, Advances in Applied Mechanics, 28 (1992) 1-44.

DOI: 10.1016/s0065-2156(08)70153-4

Google Scholar

[7] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal of Scientific and Statistical Computing, 7 (1986) 856-869.

DOI: 10.1137/0907058

Google Scholar

[8] S. Arya, S. Khan, P. Lehana, Design and fabrication of electrostatic micro-cantilever array as audible frequency generator, Journal of Electrostatics, 76 (2015) 145-151.

DOI: 10.1016/j.elstat.2015.05.015

Google Scholar

[9] S. Arya, S. Khan, P. Lehana, Finite Element Modelling of Piezoelectric Micro-Cantilever as Gas Sensor, in Proc. of International IEEE Conference on Emerging Trends and Applications in Computer Science (ICETACS), (2013) 13-14.

DOI: 10.1109/icetacs.2013.6691418

Google Scholar

[10] A. S. Nezhad, M. Ghanbari, C. G. Agudelo, M. Packirisamy, R. B. Bhat, A. Geitmann, PDMS Microcantilever-Based Flow Sensor Integration for Lab-on-a-Chip, IEEE Sensors Journal, 13 (2013) 601-609.

DOI: 10.1109/jsen.2012.2223667

Google Scholar

[11] H. D. Akaydin, N. Elvin, Y. Andreopoulos, Energy Harvesting from Highly Unsteady Fluid Flows using Piezoelectric Materials, Journal of Intelligent Material Systems and Structures, 21 (2010) 1263-1278.

DOI: 10.1177/1045389x10366317

Google Scholar

[12] A. Kuoni, R. Holzherr, M. Boillat, N. Rooij, Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor, J. Micromech. Microeng. 13 (2003) 103-107.

DOI: 10.1088/0960-1317/13/4/317

Google Scholar

[13] A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, K. Mayaram, Simulation and optimization of a microfluidic flow sensor, Sensors Actuat. A, Phys. 88 (2001) 121-132.

DOI: 10.1016/s0924-4247(00)00503-3

Google Scholar

[14] T. E. Tezduyar, Stabilized finite element methods for computation of flows with moving boundaries and interfaces, in Lecture Notes on Finite Element Simulation of Flow Problems (Basic - Advanced Course), Japan Society of Computational Engineering and Sciences, Japan, (2003).

DOI: 10.1007/bf02897870

Google Scholar

[15] K. Stein, B. Griffin, Finite element modelling of fluid–structure interactions with space–time and advanced mesh update techniques, in Proc. of 10th international conference on Numerical Methods in Continuum Mechanics, (2005) 1-20.

Google Scholar

[16] A. Masud, T. J. R. Hughes, A space–time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Computer Methods in Applied Mechanics and Engineering, 146 (1997) 91-126.

DOI: 10.1016/s0045-7825(96)01222-4

Google Scholar

[17] T. J. R. Hughes, L. P. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, 59 (1986).

DOI: 10.1016/0045-7825(86)90025-3

Google Scholar

[18] T. E. Tezduyar, S. Sathe, R. Keedy, K. Stein, Space–time finite element techniques for computation of fluid–structure interactions, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2002-(2027).

DOI: 10.1016/j.cma.2004.09.014

Google Scholar

[19] T. E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 411-430.

DOI: 10.1016/s0045-7825(00)00211-5

Google Scholar

[20] S. Arya, S. Khan, P. Lehana, Analytic Model of Microcantilevers as Low Frequency Generator, Modelling and Simulation in Engineering, Article ID 897315, (2014) 1-7.

DOI: 10.1155/2014/897315

Google Scholar

[21] R. Ab. Rahim, B. Bais, B. Y. Majlis, Design and Analysis of MEMS Piezoresistive SiO2 Cantilever-based Sensor with Stress Concentration Region for Biosensing Applications, in IEEE proc. ICSE 2008, Malaysia, (2008) 211-215.

DOI: 10.1109/smelec.2008.4770310

Google Scholar