Investigation of a New Corrosion Inhibitor Cucurbiturils for Mild Steel in 10% Acidic Medium

Article Preview

Abstract:

The corrosion inhibition property of cucurbiturils has studied in 10% HCl for mild steel using gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (Tafel) and scanning electron microscopy (SEM) methods. It was found that the inhibition efficiency of inhibitors increases with increase in concentration. The effect of temperature on the corrosion rate was investigated and some thermodynamic parameters were calculated. Polarization studies show that inhibitors are of mixed type in nature. The results show that they are good inhibitors, and the adsorption of inhibitors on mild steel surface obeys Langmuir adsorption isotherm. Scanning electron microscopic (SEM) studies were used to characterize the surface morphology of uninhibited and inhibited mild steel specimens. The results obtained from experimental measurements and those from theoretical calculations are in good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-38

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. Abd El-Lateef, Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized amines in hydrochloric acid solutions, Corros. Sci. 92 (2015) 104–117.

DOI: 10.1016/j.corsci.2014.11.040

Google Scholar

[2] J. Saranya, P. Sounthari, K. Parameswari, S. Chitra, Acenaphtho[1, 2-b]quinoxaline and acenaphtho[1, 2-b]pyrazine as corrosion inhibitors for mild steel in acid medium, Measurement 77 (2016) 175–186.

DOI: 10.1016/j.measurement.2015.09.008

Google Scholar

[3] Olusegun K. Abiola1*, E.M. Odin2, D.N. Olowoyo3 and T.A. Adeloye4, gossipiumhirsutum l. Extract as green corrosion inhibitor for Aluminum in hcl solution, Bull. Chem. Soc. Ethiop. 2011, 25(3), 475-480. ISSN 1011-3924 Printed in Ethiopia.

Google Scholar

[4] M. Behpour, S.M. Ghoreishi, N. Mohammadi, N. Soltani, M. SalavatiNiasari, Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel, Corros. Sci. 52 (2010) 4046–4057.

DOI: 10.1016/j.corsci.2010.08.020

Google Scholar

[5] C. Verma, A. Singh, G. Pallikonda, M. Chakravarty, M.A. Quraishi, I. Bahadur, E.E. Ebenso, Aryl sulfonamidomethylphosphonates as a new class of green corrosion inhibitors for mild steel in 1 M HCl: electrochemical, surface and quantum chemical investigation, J. Mol. Liq. 209 (2015).

DOI: 10.1016/j.molliq.2015.06.013

Google Scholar

[6] M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review, Corros. Sci. 86 (2014) 17–41.

DOI: 10.1016/j.corsci.2014.04.044

Google Scholar

[7] D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. Al-Noaimi, Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: experimental and computational study, Corros. Sci. (2015).

DOI: 10.1016/j.corsci.2015.01.025

Google Scholar

[8] R. Hasanov, S. Bilge, S. Bilgic ¸, G. Gece, Z. Kılıc ¸, Experimental and theoretical calculations on corrosion inhibition of steel in 1 M H2SO4 by crown type polyethers, Corros. Sci. 52 (2010) 984–990.

DOI: 10.1016/j.corsci.2009.11.022

Google Scholar

[9] I.B. Obot, D.D. Macdonald, Z.M. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview, Corros. Sci. (2015).

DOI: 10.1016/j.corsci.2015.01.037

Google Scholar

[10] D. Daoud, T. Douadi, S. Issaadi, S. Chafaa, Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions, Corros. Sci. 79 (2014) 50–58.

DOI: 10.1016/j.corsci.2013.10.025

Google Scholar

[11] Lin, Jingxiang, Zhang, Yunqian Zhang, Jianxin Xue, Saifeng Zhu, Qianjiang Tao, Zhu. Synthesis of partially methyl substituted cucurbit[n]urils with 3a-methyl-glycoluril. 2008 year. Journal of Molecular Structure. Volume-875. Issue 1-3. Pages 442-446.

DOI: 10.1016/j.molstruc.2007.05.017

Google Scholar

[12] Zhou, Jia-Jia Yu, Xin Zhao, Ying-Chun Xiao, Xin Zhang, Yun-Qian Zhu, Qian-Jiang Xue, Sai-Feng Zhang, Qian-Jun Liu, Jing-Xin Tao, Zhu. 2014 year. Synthesis of a symmetrical octamethyl-substituted cucurbituril with a dimethyl-substituted glycoluril dimer. Journal: Tetrahedron. Volume: 70. Issue 4. Pages 800-804.

DOI: 10.1016/j.tet.2013.12.047

Google Scholar

[13] M.A. Hegazy, A.M. Hasan, M.M. Emara, M.F. Bakr, A.H. Youssef, Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbonsteel in 1 M hydrochloric acid, Corros. Sci. 65 (2012) 67– 76.

DOI: 10.1016/j.corsci.2012.08.005

Google Scholar

[14] M. Lashgari, M.R. Arshadi, S. Miandari, The enhancing power of iodide on corrosion prevention of mild steel in the presence of a synthetic-soluble Schiff-base: electrochemical and surface analyses, Electrochim. Acta 55 (2010) 6058–6063.

DOI: 10.1016/j.electacta.2010.05.066

Google Scholar

[15] H.D. Leçe, K.C. Emregu, O. Atakol, Difference in the inhibitive effect of some Schiff base compounds containing oxygen, nitrogen and sulfur donors, Corros. Sci. 50 (2008) 1460–1468.

DOI: 10.1016/j.corsci.2008.01.014

Google Scholar

[16] S. Issaadi, T. Douadi, A. Zouaoui, S. Chafaa, M.A. Khan, G. Bouet, Novel thiophene symmetrical Schiff base compounds as corrosion inhibitor for mild steel in acidic media, Corros. Sci. 53 (2011) 1484–1488.

DOI: 10.1016/j.corsci.2011.01.022

Google Scholar

[17] V. Jetti, R. Pagadala, J.S. Meshram, H.N. Chopde, L. Malladi, Zeolitesupported one-pot synthesis of bis azetidinones under microwave irradiation, J. Heterocycl. Chem. 50 (2013) 160–165.

DOI: 10.1002/jhet.1108

Google Scholar

[18] Mourya P, Banerjee S, Rastogi RB, Singh MM. Inhibition of Mild steel corrosion in hydrochloric and sulfuric acid media using a thiosemicarbazone derivative. Ind Eng Chem Res 2013; 52: 12733–47.

DOI: 10.1021/ie4012497

Google Scholar

[19] C. Verma, P. Singh, I. Bahadur, E.E. Ebenso, M.A. Quraishi, Electrochemical, thermodynamic, surface and theoretical investigation of 2-aminobenzene-1, 3-dicarbonitriles as green corrosioninhibitor for aluminum in 0. 5 M NaOH, J. Mol. Liq. 209 (2015).

DOI: 10.1016/j.molliq.2015.06.039

Google Scholar

[20] M.S. Nooshabadi, M. Behpour, F.S. Razavi, M. Hamadanian, V. Nejadshafieea, Study of N-benzylidene derivatives synthesizedas corrosion inhibitors for copper in HCl solution, RSC Adv. 5(2015) 23357–23366.

DOI: 10.1039/c5ra00561b

Google Scholar

[21] A. Ehsani, M.G. Mahjani, R. Moshrefi, H. Mostaanzadeh, J.S. Shayeh, Electrochemical and DFT study on the inhibition of 316Lstainless steel corrosion in acidic medium by 1-(4-nitrophenyl)-5-amino-1H-tetrazole, RSC Adv. 4 (2014) 20031–20037.

DOI: 10.1039/c4ra01029a

Google Scholar

[22] C. Verma, M.A. Quraishi, A. Singh, 2-Aminobenzene-1, 3-dicarbonitriles as green corrosion inhibitor for mild steel in1 M HCl: electrochemical, thermodynamic, surface and quantum chemical investigation, J. Taiwan Inst. Chem. Eng. 49 (2015)229–239.

DOI: 10.1016/j.jtice.2014.11.029

Google Scholar

[23] C. Verma, P. Singh, M.A. Quraishi, A thermodynamical, electrochemical and surface investigation of Bis(indolyl)methanesas Green corrosion inhibitors for mild steel in 1 M hydrochloric acid solution, J. Assoc. Arab Univ. Basic Appl. Sci. (2015).

DOI: 10.1016/j.jaubas.2015.04.003

Google Scholar

[24] J.C. Liu, S.W. Park, S. Nagao, M. Nogi, H. Koga, J.S. Ma, G. g. Zhang, K. Suganuma, The role of Zn precipitates and Cl-anionsin pitting corrosion of Sn–Zn solder alloys, Corros. Sci. 92 (2015)263–271.

DOI: 10.1016/j.corsci.2014.12.014

Google Scholar

[25] M. Mihit, K. Laarej, H. Abou El Makarim, L. Bazzi, R. Salghi, B. Hammouti, Study of the inhibition of the corrosion of copper andzinc in HNO3 solution by electrochemical technique and quantumchemical calculations, Arab. J. Chem. 3 (2010) 55–60.

DOI: 10.1016/j.arabjc.2009.12.009

Google Scholar

[26] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman Jr., Gaussian 03, revision E. 01, GaussianInc., Wallingford, CT, (2007).

Google Scholar

[27] Tang Y, Zhang F, Hu S, Cao Z, Wu Z, Jing W. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: gravimetric, electrochemical, SEM and XPS studies. Corros Sci 2013; 74: 271–82.

DOI: 10.1016/j.corsci.2013.04.053

Google Scholar

[28] Tourabi M, Nohair K, Traisnel M, Jama C, Bentiss F. Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutionsby 3, 5-bis(2-thienylmethyl)-4-amino-1, 2, 4-triazole. Corros Sci 2013; 75: 123–33.

DOI: 10.1016/j.corsci.2013.05.023

Google Scholar

[29] Hamani H, Douadi T, Al-Noaimi M, Issaadi S, Daoud D, Chafaa S. Electrochemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Corros Sci 2014; 88: 234–45.

DOI: 10.1016/j.corsci.2014.07.044

Google Scholar

[30] D.K. Yadav, M.A. Quraishi, Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution, Ind. Eng. Chem. Res. 51 (2012) 8194–8210.

DOI: 10.1021/ie3002155

Google Scholar

[31] Abd El-Lateef HM, Abu-Dief AM, Abdel-Rahman LH, Sanudo EC, Aliaga-Alcalde N. Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J Electroanal Chem 2015; 743: 120– 33.

DOI: 10.1016/j.jelechem.2015.02.023

Google Scholar

[32] Yadav DK, Quraishi MA. Application of some condensed uracils as corrosion inhibitors for mild steel: gravimetric, electrochemical, surface morphological, UV−visible, and theoretical investigations. Ind Eng Chem Res 2012; 51: 14966–79.

DOI: 10.1021/ie301840y

Google Scholar

[33] Priyanka Singh, Vandana Srivastava, M.A. Quraishi, Novel quinoline derivatives as green corrosion inhibitors for mild steel inacidic medium: Electrochemical, SEM, AFM, and XPS studies, Journal of Molecular Liquids 216 (2016) 164-173.

DOI: 10.1016/j.molliq.2015.12.086

Google Scholar

[34] Verma CB, Quraishi MA, Singh A. 2-Aminobenzene-1, 3-dicarbonitriles as greencorrosion inhibitor for mild steel in 1M HCl: electrochemical, thermodynamic, surface and quantum chemical investigation. J Taiwan Inst Chem Eng. 2014 http: /dx. doi. org/10. 1016/j. jtice. 2014. 11. 029.

DOI: 10.1016/j.jtice.2014.11.029

Google Scholar

[35] Martinez S, Stern I. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acidsystem. Appl Surf Sci. 2002; 199: 83–9. 48.

DOI: 10.1016/s0169-4332(02)00546-9

Google Scholar

[36] Deng S, Li X, Xie X. Hydroxymethyl urea and 1, 3-bis(hydroxymethyl) urea as cor- rosion inhibitors for steel in HCl solution. Corros Sci. 2014; 80: 276–89.

DOI: 10.1016/j.corsci.2013.11.041

Google Scholar

[37] A.K. Singh, Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-(Z)-indolin-3-ylideneamino)phenylimino)indolin-2-one, Ind. Eng. Chem. Res. 51 (2012) 3215–3223.

DOI: 10.1021/ie2020476

Google Scholar

[38] C. Verma, M.J. Reddy, M.A. Quraishi, Microwave assisted eco-friendly synthesis of chalcones using 2, 4-dihydroxy ace- tophenone and aldehydes as corrosion inhibitors for mild steel in 1 M HCl, Anal. Bioanal. Electrochem. 6 (2014) 321–340.

Google Scholar

[39] S. Deng, X. Li, H. Fu, Acid violet 6B as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution, Corros. Sci. 53 (2011) 760–768.

DOI: 10.1016/j.corsci.2010.11.002

Google Scholar

[40] I. Ahamad, R. Prasad, M.A. Quraishi, Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media, Corros. Sci. 52 (2010)1472–1481.

DOI: 10.1016/j.corsci.2010.01.015

Google Scholar

[41] D.K. Yadav, B. Maiti, M.A. Quraishi, Electrochemical and quantum chemical studies of 3, 4-dihydropyrimidin-2(1H)-ones as corrosion inhibitors for mild steel in hydrochloric acid solution, Corros. Sci. 52 (2010) 3586–3598.

DOI: 10.1016/j.corsci.2010.06.030

Google Scholar