Blood Flow Velocity Changes in the Middle Cerebral Artery Induced by Driving Fatigue

Article Preview

Abstract:

The cerebral blood flow velocity (CBFV) of middle cerebral artery (MCA) was detected during the fatigue driving using Transcranial Doppler. The CBFV was also analyzed after the fatigue driving by different means of relaxation to alleviate brain fatigue. The results show that the CBFV in MCA is reduced by driving fatigue.

You have full access to the following eBook

Info:

Periodical:

Pages:

219-222

Citation:

Online since:

December 2011

Export:

Share:

Citation:

[1] R. Aaslid, T.M. Markwalder, H. Nornes, Noninvasive transcranial doppler ultrasound recording of flow velocity in basal cerebral arteries, J. Neurosurg. 57(1982) 769– 774.

DOI: 10.3171/jns.1982.57.6.0769

Google Scholar

[2] J.E. Peltonen, J.M. Kowalchuk, D.H. Paterson, D.S. DeLorey, G.R. duManoir, R.J. Petrella, J.K. Shoemaker, Cerebral and muscle tissue oxygenation in acute hypoxic ventilatory response test,Respiratory Physiology & Neurobiology. 155 (2007) 71–81.

DOI: 10.1016/j.resp.2006.03.008

Google Scholar

[3] H.H. Van, P. Poommipanit, M. Shalaby, R. Gevorgyan, C.H. Tseng, J. Tobis, Sensitivity of transcranial doppler versus intracardiac echocardiography in the detection of right-to-left shunt, Cardiovascular Imaging. 4 (2010) 343-348.

DOI: 10.1016/j.jcmg.2009.12.012

Google Scholar

[4] R.G. Wise, K. Ide, M.J. Poulin, I. Tracey, Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal, NeuroImage. 21 (2004) 1652– 1664.

DOI: 10.1016/j.neuroimage.2003.11.025

Google Scholar

[5] G. Vingerhoets, E. Luppens, Cerebral blood flow velocity changes during dichotic listening with directed or divided attention: a transcranial doppler ultrasonography study, Neuropsychologia. 39 (2001) 1105–1111.

DOI: 10.1016/s0028-3932(01)00030-6

Google Scholar

[6] B.A. Frauenfelder, D. Schuepbach, R.W. Baumgartner, D. Hell, Specific alterations of cerebral hemodynamics during a planning task: a transcranial Doppler sonography study, NeuroImage. 22 (2004) 1223–1230.

DOI: 10.1016/j.neuroimage.2004.03.008

Google Scholar

[7] C. Schnittger, S. Johannes, A. Arnavaz, T.F. Munte, Blood flow velocity changes in the middle cerebral artery induced by processing of hierarchical visual stimuli, Neuropsychologia. 8 (1997) 1181-1184.

DOI: 10.1016/s0028-3932(97)00038-9

Google Scholar

[8] N. Rhodes, D. Brown, A. Edison, Approaches to understanding young driver risk taking, J. Safety Research-Traffic Records Forum proceedings. 36 (2005) 497-499.

DOI: 10.1016/j.jsr.2005.10.012

Google Scholar

[9] G. Yang, Y.Z. Lin, B. Prabir, A driver fatigue recognition model based on information fusion and dynamic Bayesian network, Information Sciences. 180 (2010) 1942–(1954).

DOI: 10.1016/j.ins.2010.01.011

Google Scholar

[10] J. Wang, W. Xu, Y. Gong, Real-time driving danger-level prediction, Engineering Applications of Artificial Intelligence. 23 (2010) 1247–1254.

DOI: 10.1016/j.engappai.2010.01.001

Google Scholar

[11] P.J. Cohen, S.C. Alexander, T.C. Smith, M. Reivich, H. Wollman, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man, J. Appl. Physiol. 23 (1067) 183–189.

DOI: 10.1152/jappl.1967.23.2.183

Google Scholar

[12] J.B. Jensen, B. Sperling, J.W. Severinghaus, N.A. Lassen, Augmented hypoxic cerebral vasodilation in men during 5 days at 3, 810m altitude, J. Appl. Physiol. 80 (1996) 1214–1218.

DOI: 10.1152/jappl.1996.80.4.1214

Google Scholar

[13] J.C. Kolb, P.N. Ainslie, K. Ide, M.J. Poulin, Protocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans, Respir. Physiol. Neurobiol. 141 (2004) 191–199.

DOI: 10.1016/j.resp.2004.04.014

Google Scholar

[14] S. Fritz, L. Chaitow, G.M. Hymel, Massage Application Assessment for Physical Healing and Rehabilitation, in: Clinical Massage in the Healthcare Setting, Elsevier Inc., Mosby, 2001, pp.248-313.

DOI: 10.1016/b978-032303996-3.50016-7

Google Scholar