Nonlinear Frequencies for Transverse Free Oscillations of a Transporting Tensioned Beam

Article Preview

Abstract:

This study focuses on the natural frequencies of nonlinear free transverse oscillations of transporting tensioned beams via the standard fast Fourier transform (FFT). The transverse oscillations of transporting tensioned beams can be governed by a nonlinear partial-differential equation or a nonlinear integro-partial-differential equation. Numerical schemes are respectively presented for the two governing equations via the differential quadrature method. For each nonlinear equation, the nonlinear oscillations frequencies are investigated via FFT with the time responses histories. The numerical results depict the tendencies of the frequencies of nonlinear free transverse oscillations of transporting tensioned beams with the changing oscillations amplitude, transporting speed, the nonlinear coefficient and the flexural stiffness.

You have full access to the following eBook

Info:

[1] C.D. Mote Jr., Dynamic stability of an axially moving band, Journal of the Franklin Institute. 285 (1968) 329-346.

DOI: 10.1016/0016-0032(68)90482-1

Google Scholar

[2] J.A. Wickert, C.D. Mote Jr., Classical vibration analysis of axially moving continua, ASME Journal of Applied Mechanics. 57 (1990) 738-44.

DOI: 10.1115/1.2897085

Google Scholar

[3] H.R. Öz and M. Pakdemirli, Vibrations of an axially moving beam with time dependent velocity, Journal of Sound and Vibration. 227 (1999) 239-257.

DOI: 10.1006/jsvi.1999.2247

Google Scholar

[4] H.R. Öz, On the vibrations of an axially traveling beam on fixed supports with variable velocity, Journal of Sound and Vibration. 239 (2001) 556-564.

DOI: 10.1006/jsvi.2000.3077

Google Scholar

[5] L. Kong, R.G. Parker, Approximate eigensolutions of axially moving beams with small flexural stiffness, Journal of Sound and Vibration. 276 (2004) 459-469.

DOI: 10.1016/j.jsv.2003.11.027

Google Scholar

[6] H. Ding, L.Q. Chen, Stability of axially accelerating viscoelastic beams multi-scale analysis with numerical confirmations, European Journal of Mechanics A/Solids. 27 (2008) 1108-1120.

DOI: 10.1016/j.euromechsol.2007.11.014

Google Scholar

[7] M.H. Ghayesh, S.E. Khadem, Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity, International Journal of Mechanical Sciences. 50 (2008) 389-404.

DOI: 10.1016/j.ijmecsci.2007.10.006

Google Scholar

[8] M.S. Matbuly, O. Ragb, M. Nassar, Natural frequencies of a functionally graded cracked beam using the differential quadrature method, Applied Mathematics and Computation. 215 (2009) 2307-2316.

DOI: 10.1016/j.amc.2009.08.026

Google Scholar

[9] E. Özkaya, M. Sarigul, H. Boyaci, Nonlinear transverse vibrations of a slightly curved beam carrying a concentrated mass, Acta Mechanica Sinica. 25 (2009) 871-882.

DOI: 10.1007/s10409-009-0275-1

Google Scholar

[10] J.A. Wickert, Non-linear vibration of a traveling tensioned beam, International Journal of Non-Linear Mechanics. 27 (1992) 503-517.

DOI: 10.1016/0020-7462(92)90016-z

Google Scholar

[11] F. Pellicano, F. Vestroni, Nonlinear dynamics and bifurcations of an axially moving beam, ASME Journal of Vibration Acoustic 122 (2000) 21-30.

DOI: 10.1115/1.568433

Google Scholar

[12] R.G. Parker, Y. Lin, Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations, ASME Journal of Applied Mechanics. 68 (2001) 49-57.

DOI: 10.1115/1.1343914

Google Scholar

[13] G. Suweken and W.T. Van Horssen, On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity, Nonlinear Dynamics 31 (2003) 197-223.

DOI: 10.1023/a:1022053131286

Google Scholar

[14] H.R. Öz, M. Pakdemirli, H. Boyaci, Non-linear vibrations and stability of an axially moving beam with time-dependent velocity, International Journal Non-Linear Mechanics. 36 (2001) 107-115.

DOI: 10.1016/s0020-7462(99)00090-6

Google Scholar

[15] K. Marynowski, Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension, Chaos, Solitons and Fractals. 21(2004) 481-490.

DOI: 10.1016/j.chaos.2003.12.020

Google Scholar

[16] H. Ding, L.Q. Chen, On two transverse nonlinear models of axially moving beams, Science in China E. 52 (2009) 743-751.

DOI: 10.1007/s11431-009-0060-1

Google Scholar

[17] L.Q. Chen, H. Ding, Steady-state responses of axially accelerating viscoelastic beams: approximate analysis and numerical confirmation, Science in China G. 51 (2008) 1707-1721.

DOI: 10.1007/s11433-008-0171-x

Google Scholar

[18] H. Ding, L.Q. Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, Journal of Sound and Vibration. 329 (2010) 3484-3494.

DOI: 10.1016/j.jsv.2010.03.005

Google Scholar

[19] H. Ding, L.Q. Chen, Natural frequencies of nonlinear vibration of axially moving beams, Nonlinear Dynamics. 63 (2011) 125-134.

DOI: 10.1007/s11071-010-9790-7

Google Scholar

[20] H. Ding, L.Q. Chen, Nonlinear models for transverse forced vibration of axially moving viscoelastic beams, Shock and Vibration. 18 (2011) 281-287.

DOI: 10.1155/2011/607313

Google Scholar

[21] P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art, Signal Processing. 19 (1990) 259-299.

DOI: 10.1016/0165-1684(90)90158-u

Google Scholar