[1]
C.D. Mote Jr., Dynamic stability of an axially moving band, Journal of the Franklin Institute. 285 (1968) 329-346.
DOI: 10.1016/0016-0032(68)90482-1
Google Scholar
[2]
J.A. Wickert, C.D. Mote Jr., Classical vibration analysis of axially moving continua, ASME Journal of Applied Mechanics. 57 (1990) 738-44.
DOI: 10.1115/1.2897085
Google Scholar
[3]
H.R. Öz and M. Pakdemirli, Vibrations of an axially moving beam with time dependent velocity, Journal of Sound and Vibration. 227 (1999) 239-257.
DOI: 10.1006/jsvi.1999.2247
Google Scholar
[4]
H.R. Öz, On the vibrations of an axially traveling beam on fixed supports with variable velocity, Journal of Sound and Vibration. 239 (2001) 556-564.
DOI: 10.1006/jsvi.2000.3077
Google Scholar
[5]
L. Kong, R.G. Parker, Approximate eigensolutions of axially moving beams with small flexural stiffness, Journal of Sound and Vibration. 276 (2004) 459-469.
DOI: 10.1016/j.jsv.2003.11.027
Google Scholar
[6]
H. Ding, L.Q. Chen, Stability of axially accelerating viscoelastic beams multi-scale analysis with numerical confirmations, European Journal of Mechanics A/Solids. 27 (2008) 1108-1120.
DOI: 10.1016/j.euromechsol.2007.11.014
Google Scholar
[7]
M.H. Ghayesh, S.E. Khadem, Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity, International Journal of Mechanical Sciences. 50 (2008) 389-404.
DOI: 10.1016/j.ijmecsci.2007.10.006
Google Scholar
[8]
M.S. Matbuly, O. Ragb, M. Nassar, Natural frequencies of a functionally graded cracked beam using the differential quadrature method, Applied Mathematics and Computation. 215 (2009) 2307-2316.
DOI: 10.1016/j.amc.2009.08.026
Google Scholar
[9]
E. Özkaya, M. Sarigul, H. Boyaci, Nonlinear transverse vibrations of a slightly curved beam carrying a concentrated mass, Acta Mechanica Sinica. 25 (2009) 871-882.
DOI: 10.1007/s10409-009-0275-1
Google Scholar
[10]
J.A. Wickert, Non-linear vibration of a traveling tensioned beam, International Journal of Non-Linear Mechanics. 27 (1992) 503-517.
DOI: 10.1016/0020-7462(92)90016-z
Google Scholar
[11]
F. Pellicano, F. Vestroni, Nonlinear dynamics and bifurcations of an axially moving beam, ASME Journal of Vibration Acoustic 122 (2000) 21-30.
DOI: 10.1115/1.568433
Google Scholar
[12]
R.G. Parker, Y. Lin, Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations, ASME Journal of Applied Mechanics. 68 (2001) 49-57.
DOI: 10.1115/1.1343914
Google Scholar
[13]
G. Suweken and W.T. Van Horssen, On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity, Nonlinear Dynamics 31 (2003) 197-223.
DOI: 10.1023/a:1022053131286
Google Scholar
[14]
H.R. Öz, M. Pakdemirli, H. Boyaci, Non-linear vibrations and stability of an axially moving beam with time-dependent velocity, International Journal Non-Linear Mechanics. 36 (2001) 107-115.
DOI: 10.1016/s0020-7462(99)00090-6
Google Scholar
[15]
K. Marynowski, Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension, Chaos, Solitons and Fractals. 21(2004) 481-490.
DOI: 10.1016/j.chaos.2003.12.020
Google Scholar
[16]
H. Ding, L.Q. Chen, On two transverse nonlinear models of axially moving beams, Science in China E. 52 (2009) 743-751.
DOI: 10.1007/s11431-009-0060-1
Google Scholar
[17]
L.Q. Chen, H. Ding, Steady-state responses of axially accelerating viscoelastic beams: approximate analysis and numerical confirmation, Science in China G. 51 (2008) 1707-1721.
DOI: 10.1007/s11433-008-0171-x
Google Scholar
[18]
H. Ding, L.Q. Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, Journal of Sound and Vibration. 329 (2010) 3484-3494.
DOI: 10.1016/j.jsv.2010.03.005
Google Scholar
[19]
H. Ding, L.Q. Chen, Natural frequencies of nonlinear vibration of axially moving beams, Nonlinear Dynamics. 63 (2011) 125-134.
DOI: 10.1007/s11071-010-9790-7
Google Scholar
[20]
H. Ding, L.Q. Chen, Nonlinear models for transverse forced vibration of axially moving viscoelastic beams, Shock and Vibration. 18 (2011) 281-287.
DOI: 10.1155/2011/607313
Google Scholar
[21]
P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art, Signal Processing. 19 (1990) 259-299.
DOI: 10.1016/0165-1684(90)90158-u
Google Scholar