A Comparative Study of Hydromechanical Properties in Saturated and Partially Saturated Conditions of Two Soils from the Runway of Oran Airport

Article Preview

Abstract:

This study concerns the ground soils of the second runway of the Es-Sénia airport in Oran (Algeria). This airport was built on a very complex hydro geotechnical site when underground cavities, following the dissolution of gypsum soil, were found during the before-construction geologic studies. Several, techniques are used in laboratory (Permeability, triaxial compression tests at various confining pressure, and hydric tests in saturated and unsaturated conditions) and for in situ it’s used the results of SPT and pressure-meter tests. A comparison of parameters of two soils identified in saturated and partially saturated conditions by in situ and laboratory tests was performed in order to respond to questions of the similarity of hydro mechanical properties of two soils as well as their statistical representativeness of the in-situ reality. It is found that, in respect to the studied parameters, laboratory results are statistically significant and reconstituted soils is statistically representative of natural soil reconstitution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-326

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. M. O. Macinnis-Ng, M. J. B. Zeppel, A. R. Palmer, and D. Eamus, Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils, J. Arid Environ., vol. 129, p.102–110, Jun. (2016).

DOI: 10.1016/j.jaridenv.2016.02.011

Google Scholar

[2] G. Aubert, les sols sodiques en afrique du nord, in Annale Agronomique de l'Institut National. Alger, Algérie, vol. VI, 1975, p.185–196.

Google Scholar

[3] K. Moussa, Etude d'une Sebkha ; la Sebkha d'Oran (Ouest algérien), Géologie, Oran, Algérie., USTO, (2007).

Google Scholar

[4] M. Chikhaoui, A. Nechnech, D. Hoxha, and K. Moussa, Contribution to the Behavior Study and Collapse Risk of Underground Cavities in Highly Saline Geological Formations, in Engineering Geology for Society and Territory - Volume 6, G. Lollino, D. Giordan, K. Thuro, C. Carranza-Torres, F. Wu, P. Marinos, and C. Delgado, Eds. Cham: Springer International Publishing, 2015, p.393.

DOI: 10.1007/978-3-319-09060-3_68

Google Scholar

[5] J. E. Low, F. A. Loveridge, W. Powrie, and D. Nicholson, A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications, Acta Geotech., vol. 10, no. 2, p.209–218, Apr. (2015).

DOI: 10.1007/s11440-014-0333-0

Google Scholar

[6] M. Rezaei, P. Seuntjens, R. Shahidi, I. Joris, W. Boënne, B. Al-Barri, and W. Cornelis, The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations, J. Hydrol., vol. 534, p.251–265, Mar. (2016).

DOI: 10.1016/j.jhydrol.2015.12.062

Google Scholar

[7] B. P. Mohanty, R. S. Kanwar, and C. J. Everts, Comparison of Saturated Hydraulic Conductivity Measurement Methods for a Glacial-Till Soil, Soil Sci. Soc. Am. J., vol. 58, no. 3, p.672, (1994).

DOI: 10.2136/sssaj1994.03615995005800030006x

Google Scholar

[8] D. Mallants, D. Jacques, P. -H. Tseng, M. T. van Genuchten, and J. Feyen, Comparison of three hydraulic property measurement methods, J. Hydrol., vol. 199, no. 3–4, p.295–318, Dec. (1997).

DOI: 10.1016/s0022-1694(96)03331-8

Google Scholar

[9] J. Mertens, H. Madsen, M. Kristensen, D. Jacques, and J. Feyen, Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective, laboratory and in-situ estimates, Hydrol. Process, vol. 19, no. 8, p.1611–1633, May (2005).

DOI: 10.1002/hyp.5591

Google Scholar

[10] A. H. Hammam and M. Eliwa, Comparison between results of dynamic & static moduli of soil determined by different methods, HBRC J., vol. 9, no. 2, p.144–149, Aug. (2013).

DOI: 10.1016/j.hbrcj.2013.05.002

Google Scholar

[11] J. A. Schneider, L. Hoyos, P. W. Mayne, E. J. Macari, and G. J. Rix, Field and laboratory measurements of dynamic shear modulus of Piedmont residual soils, in Geotechnical Special Publication, Charlotte, NC, USA, 1999, vol. 92, p.12–25.

Google Scholar

[12] F. Homand, A. Giraud, S. Escoffier, A. Koriche, and D. Hoxha, "Permeability determination of a deep argillite in saturated and partially saturated conditions, Int. J. Heat Mass Transf., vol. 47, no. 14–16, p.3517–3531, Jul. (2004).

DOI: 10.1016/j.ijheatmasstransfer.2004.02.012

Google Scholar

[13] LTPO, Reconnaissance géotechnique préliminaire de la 2ème Piste (07/25) de l'Aerodrome d'Oran Es-Sénia. (2005).

Google Scholar

[14] LTPO, Contrôle et suivi géotechnique des traveaux de réalisation de la 2ème Piste (07/25) de l'Aerodrome d'Oran Es-Sénia. LTPO, (2007).

Google Scholar

[15] NF P94-093, Sols : reconnaissance et essais - Détermination des références de compactage d'un matériau - Essai Proctor normal. Essai Proctor modifié. Afnor, (1999).

Google Scholar

[16] NF P 94-074, 1994, Sols : Reconnaissance et essais. Essais à l'appareil triaxial de révolution. Normes Française. Afnor. (1994).

Google Scholar

[17] J. -M. Fleureau, J. -C. Verbrugge, P. J. Huergo, A. G. Correia, and S. Kheirbek-Saoud, Aspects of the behaviour of compacted clayey soils on drying and wetting paths, Can. Geotech. J., vol. 39, no. 6, p.1341–1357, Dec. (2002).

DOI: 10.1139/t02-100

Google Scholar

[18] J. Biarez and P. Y. Hischer., Lois de comportement des sols remaniés et des matériaux granulaires, 3ème edition. Ecole centrale de Paris., (1990).

Google Scholar

[19] P 94-512-11, ICS, Détermination de perméabilité à charge constante et à charge variable décroissante. Reconnaissance et essais géotechniques. Essais de laboratoire sur les sols. Indice de classement  : 13. 080. 20 ; 93. 020. Normes AFNOR 2005. ISSN 0335-3931.

Google Scholar

[20] J. P. Baud and M. Gambien, Obtaining the Ménard α Rheological Factor in a Pressiorama® Diagram, in 18th ICSMGE, Paris, France, 2013, vol. 1, p.487–490.

Google Scholar