Evolution of the Efficiency of a Photovoltaic/Supercapcitor System with Aging

Article Preview

Abstract:

The evolution of the optimization of photovoltaic/supercapacitor system according to its age is inquired. The system is modeled by an accurate equivalent circuit. The durations and energies of charge/discharge cycles are calculated for a 10 year use. The temporal and energy efficiencies are then deduced according to time, and optimal values are hence extracted. Results show that the optimal efficiencies can be kept constant over time at a value around 90% for the energy. However, the amount of energy stored and released by the supercapacitors is reduced over the years and the response time becomes shorter. So, the behavior of the system is modified with aging regarding its initial nominal functioning. This has to be considered to know the real profitability of the system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

520-528

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ziyad, Renewable Energy System Design, Academic Press, Waltham, Massachusetts, USA, Chapter 4, pp.201-29 (2014).

Google Scholar

[2] I.S. Ike, S. Iyuke, Mathematical Modelling and Simulation of Supercapacitors, Nanomaterials in Advanced Batteries and Supercapacitors, Nanostructure Science and Technology, pp.515-562.

DOI: 10.1007/978-3-319-26082-2_15

Google Scholar

[3] P. Rajput, G.N. Tiwari, O.S. Sastry, B. Bora, V. Sharma, Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India, Solar Energy 135 (2016) 786–795.

DOI: 10.1016/j.solener.2016.06.047

Google Scholar

[4] H. El Brouji, O. Briat, J.M. Vinassa, N. Bertrand, E. Woirgard, Comparison between changes of ultracapacitors model parameters during calendar life and power cycling ageing tests, Microelectronics Reliability 48 (2008) 1473–1478.

DOI: 10.1016/j.microrel.2008.07.022

Google Scholar

[5] R. German, A. Sari, P. Venet, M. Ayadi, O. Briat, J.M. Vinassa, Prediction of supercapacitors floating ageing with surface electrode interface based ageing law, Microelectronics Reliability 54 (2014) 1813–1817.

DOI: 10.1016/j.microrel.2014.07.105

Google Scholar

[6] P.O. Logerais, O. Riou, M.A. Camara, J.F. Durastanti (2013).

Google Scholar

[7] A. Djellad, P.O. Logerais, A. Omeiri, O. Riou, J.F. Durastanti (2014), Optimization of the energy transfer in a system combining photovoltaic source to ultracapacitors, International Journal of Hydrogen Energy, 39(27), p.15169–15177.

DOI: 10.1016/j.ijhydene.2014.03.144

Google Scholar

[8] R. Doumane, M. Balistrou, P. O. Logerais, O. Riou, J. F. Durastanti, A. Charki, A Circuit-Based Approach to Simulate the Characteristics of a Silicon Photovoltaic Module With Aging, Journal of Solar Energy Engineering 137(2), 021020.

DOI: 10.1115/1.4029541

Google Scholar

[9] M.G. Villalva, J.R. Gazoli, F.E., Ruppert, Modelling and circuit-based simulation of photovoltaic array, Brazilian Journal Of Power Electronics 14(1), 200935-45.

Google Scholar

[10] D. L. King, M. A. Quintana, J. A. Kratochvil, D. E. Ellibee, B. R. Hansen, (2000), Photovoltaic Module Performance and Durability Following Long-term Field Exposure, Progress in photovoltaics: research and applications, 8, pp.241-256.

DOI: 10.1002/(sici)1099-159x(200003/04)8:2<241::aid-pip290>3.0.co;2-d

Google Scholar

[11] H.Y. Hsu, H.H. Hsieh, H.Y. Tuan, J.L. Hwang, (2010), Oxidized low density polyethylene: A potential cost-effective, stable, and recyclable polymeric encapsulant for photovoltaic modules, Solar Energy Materials & Solar Cells, 94, p.955–959.

DOI: 10.1016/j.solmat.2010.01.020

Google Scholar

[12] N. Park, C. Han, D. Kim, (2013), Effect of moisture condensation on long-term reliability of crystalline silicon photovoltaic modules, Microelectronics Reliability 53 (2013) 1922-(1926).

DOI: 10.1016/j.microrel.2013.05.004

Google Scholar

[13] T. Hulkoff, Usage of Highly Accelerated Stress Test (HAST) in Solar Module Ageing Procedures. Master of Science Thesis, Chalmers University of Technology, Göteborg, Sweden, (2009).

Google Scholar

[14] Standard IEC 61215, Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualification and type approval.

DOI: 10.3403/00583064

Google Scholar

[15] F. Belhachemi, Modélisation et caractérisation des supercondensateurs à couche double électrique utilisés en électronique de puissance, thèse de doctorat, Institut National Polytechnique de Lorraine, (2001).

DOI: 10.3166/rige.8.633-657

Google Scholar

[16] B. Multon, J. Aubry, P. Haessig, H. Ben Ahmed, Systèmes de stockage d'énergie électrique, Techniques de l'Ingénieur, (2013).

DOI: 10.51257/a-v1-be8100

Google Scholar