Oxygen Transfer Reactions during Sintering of Ferrous Powder Compacts

Article Preview

Abstract:

Powder metallurgy products may be started from powders with widely varying oxygen affinity. Thus the natural oxygen content of the powder compacts also varies in reducibility in the early stages of sintering. Here it is shown that prealloyed powders containing Cr require higher temperatures for oxygen removal than e.g. unalloyed or Ni-Cu alloyed grades. In case of powder mixes of base iron powder with Cr, Mn or Si, oxygen transfer from Fe to the additive powders may occur during heating up to sintering temperature, the “internal getter effect”. A similar effect can be observed in Cr prealloyed powders in which iron oxides initially present on the powder surfaces are transformed to more stable oxides in a fairly early stage of heating. Finally, also the formation of CH4 observed when sintering alloy steels containing Si, Mn or Cr in H2 can be attributed to an oxygen transfer effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASM Handbook Vol.7 Powder metal technologies and applications,, ASM, Materials Park OH (1998).

Google Scholar

[2] R.M. German, Powder metallurgy of iron and steel. MPIF, Princeton NJ (1996).

Google Scholar

[3] A.Flodin, Powder metallurgy gears: Opportunities for enhancing automotive transmission design, Powder Metall. Review 3 No.1 (2014) 45-53.

Google Scholar

[4] F.V. Lenel, Powder metallurgy – principles and applications. MPIF, Princeton NJ (1980).

Google Scholar

[5] H.C. Neubing, G.Jangg, Sintering of aluminium parts – the state of the art, Metal Powder Report 42 (1987) pp.354-358.

Google Scholar

[6] B.Lindqvist, Chromium alloyed PM steels - a new powder generation, Proc. EuroPM2001, Nice, EPMA, Shrewsbury (2001) Vol.1, pp.13-21.

Google Scholar

[7] H.Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Rößler, Y. Yu, Degassing and deoxidation processes during sintering of unalloyed and alloyed PM steels, Powder Metallurgy Progress Vol. 2, No.2 (2002) pp.125-140.

Google Scholar

[8] M.Motooka, N.Kuroishi. A.Hara, N.Furukawa, Strength and ductility of Mn-Cr sintered steel, Metal Powder Report 38 (1983) No.11, p.3.

Google Scholar

[9] H.Danninger, C.Gierl, New Alloying Systems for Ferrous Powder Metallurgy Precision Parts, Sci. Sintering 40 (2008) pp.33-46.

DOI: 10.2298/sos0801033d

Google Scholar

[10] O.Bergman, L.Nyborg, Evaluation of sintered properties of PM steels based on Cr and Cr-Mn prealloyed powders, Powder Metall. Progress 10 No.1 (2010) pp.1-19.

Google Scholar

[11] A.Šalak, Ferrous Powder Metallurgy, CISP, Cambridge UK (1995).

Google Scholar

[12] B.Lindsley, S.Shah, G.Schluterman, J.Falleur, Mn-Containing Steels for High Performance PM Applications, Adv. Powder Metall. & Partic. Mater. - 2011 (Proc. PowderMet2011, San Francisco), compiled by I.E. Anderson, T.W. Pelletiers, MPIF, Princeton NJ (2011).

Google Scholar

[13] J.Tengzelius, S.E. Grek, C.A. Blände, Limitations and possibilities in the utilization of Cr and Mn as alloying elements in high strength sintered steels, Modern Dev. in Powder Metall. 13 (1981) pp.159-182.

Google Scholar

[14] A.Šalak, High strength sintered manganese steels, Modern Dev. in Powder Metall. 13 (1981) pp.183-201.

Google Scholar

[15] A.Šalak, M.Selecka, R. Bures, Manganese in ferrous powder metallurgy, Powder Metall. Progress 1 No.1 (2001) pp.41-58.

Google Scholar

[16] I.Karasuno, K.Koshiro, M.Umino, M.Ichidate, Some properties of oil atomized low alloy steel powders containing chromium, Horizons in PM (Proc. PM'86 Düsseldorf), W.A. Kaysser, W.J. Huppmann eds., Verlag Schmid, Freiburg (1986) Vol.1, pp.53-56.

Google Scholar

[17] S.Unami, K.Ogura, S.Uenosono, Effect of C on the strength of sintered Cr-Mo alloyed steel powder compacts, Proc. PM'98 Powder Metallurgy World Congress Granada, EPMA, Shrewsbury (1998) Vol.3, pp.173-177.

DOI: 10.2497/jjspm.43.1106

Google Scholar

[18] S.Berg, B.Maroli, Properties obtained by chromium-containing material, Adv. Powder Metall. and Partic. Mater. – 2002 (Proc. PM2002 Orlando, MPIF, Princeton NJ (2002) Part 8, p.1 (on CD).

Google Scholar

[19] R. de Oro Calderon, E. Bernardo Quejido, M. Campos Gomez, C. Gierl-Mayer, H. Danninger, J.M. Torralba, Tailoring master alloys for liquid phase sintering: Effect of introducing oxidation-sensitive elements, Powder Metallurgy Vol. 59 (2016).

DOI: 10.1080/00325899.2016.1148897

Google Scholar

[20] F.Castro, P.Ortiz, Study of gas-solid interactions during sintering of Cr-containing PM steels, Proc. EuroPM2003, Valencia, EPMA, Shrewsbury (2003) Vol.1, pp.261-267.

Google Scholar

[21] H.Karlsson, L.Nyborg, S.Berg, Y.Yu: Surface product formation of chromium alloyed steel powder particles. Proc. EuroPM2001, Nice, EPMA, Shrewsbury (2001) Vol.1, pp.22-27.

Google Scholar

[22] Hryha, C. Gierl, L. Nyborg, H. Danninger, E. Dudrova: Surface composition of the steel powders pre-alloyed with manganese,, Appl. Surf. Sci. Vol. 256 (2010) pp.3946-3961.

DOI: 10.1016/j.apsusc.2010.01.055

Google Scholar

[23] C.Gierl-Mayer, H.Danninger: Dilatometry coupled with MS as instrument for process control in sintering of powder metallurgy steels. Powder Metall. Progress 15 (2015) No.1, pp.3-12.

DOI: 10.4028/www.scientific.net/msf.835.106

Google Scholar

[24] A.R. Glassner: The Thermochemical Properties of the Oxides, Chlorides, and Fluorides to 2500°K. U.S. Atomic Energy Comm. Rep. ANL-5750, Washington D.C., (1957).

DOI: 10.2172/4348903

Google Scholar

[25] S.Karamchedu, E.Hryha, L.Nyborg: Changes in the surface chemistry of chromium-alloyed powder metallurgical steel during delubrication and their impact on sintering. J. Mater. Processing Technol. 223 (2015) 171-185.

DOI: 10.1016/j.jmatprotec.2015.03.054

Google Scholar

[26] Handbook of Chemistry and Physics, 67th Ed., CRC Press, Inc. Boca Raton FL, (1989).

Google Scholar

[27] H. Danninger, A. Avakemian, C. Gierl-Mayer, M. Dlapka, M. Grafinger, Methane formation through substrate-atmosphere interaction during sintering of Si containing steels, Proc. Euro PM2014, EPMA, Shrewsbury UK (2014), Paper-Nr. EP14038.

Google Scholar

[28] C.Gierl-Mayer, R. de Oro Calderon, H. Danninger, The role of oxygen transfer in sintering of low alloy steel powder compacts: A review of the internal getter, effect, JOM 68 (2016) No.3, pp.920-927.

DOI: 10.1007/s11837-016-1819-z

Google Scholar

[29] H. Danninger, R. Pöttschacher, S. Bradac, A. Salak, J. Seyrkammer, Comparison of Mn, Cr and Mo alloyed sintered steels prepared from elemental powders, Powder Metall. 59 (2005) pp.23-32.

DOI: 10.1179/003258905x37567

Google Scholar

[30] C. Gierl-Mayer, H. Danninger, R. de Oro Calderon, Methane Formation During Sintering Of PM Steels Alloyed With Chromium And/or Manganese, Proc. WorldPM2016 Congress and Exhibition, Hamburg, EPMA, Shrewsbury (2016) paper no. 3296841.

Google Scholar

[31] R. de Oro Calderon, C. Gierl-Mayer, H. Danninger, Effects of H2 atmospheres on sintering of steels containing oxidation sensitive elements introduced through the master alloy route. Advances in Powder Metallurgy & Particulate Materials (2016).

DOI: 10.1007/s11837-017-2287-9

Google Scholar