[1]
A. Juan, Characterization of polymeric binders for metal injection molding (MIM) process. PhD thesis. University of Akron, Ohio, United States, (2007) 5-10.
Google Scholar
[2]
K.F. Hens, R.M. German, Adv. Powder. Metall. Part. Mater. Vol. 5, Metal Powder Industries Federation, Princeton, NJ (1993), 133–142.
Google Scholar
[3]
K.F. Hens, J.A. Grohowski, R.M. German, J.J. Valencia, and T. McCabe, Processing of Superalloys via Powder Injection Molding, Adv. Powder. Metall. Part. Mater. vol. 4, (1994).
Google Scholar
[4]
B.O. Rhee, M.Y. Cao, H.R. Zhang, E. Streicher & C.I. Chung, Improved wax based binder formulations for powder injection molding, Powder Injection Molding 2 (1991) 43-58.
Google Scholar
[5]
J. Adee, J. MacPherson, Process for forming metal parts with less than 1 percent carbon content, Patent 4225345, (1980).
Google Scholar
[6]
E. Hermann, Molding comminuted nonplastic inorganic material, Patent 3330892 (1967).
Google Scholar
[7]
K. Johnson, Process for fabricating parts from particulate material, Patent 4765950 (1988).
Google Scholar
[8]
H. Kihara et al, Process for manufacturing sintered bodies, Patent 5059388 (1991).
Google Scholar
[9]
Y. Kiyota, Starting material for injection molding of metal powder and method of producing sintered parts, Patent 4867943 (1989).
Google Scholar
[10]
Miura et al, Process for producing sinters and binder for use in that process, Patent 5266264 (1993).
Google Scholar
[11]
R. Pett et al, Moldable mixture of sacrificial binder and sinterable particulate solids, Patent 4265794 (1980).
Google Scholar
[12]
C. Karatas, S. Saritas, Rheological properties of MIM feedstocks produced from gas and water-atomized 316L stainless steel powders, Adv. Powder. Metall. Part. Mater. 4 (2001) 45-51.
Google Scholar
[13]
S. Li, B. Huang, Y. Li, X. Qu, S. Liu, J. Fan, A new type of binder for metal injection molding, J. Mater. Proc. Tech. 137 (2003) 70-73.
DOI: 10.1016/s0924-0136(02)01069-5
Google Scholar
[14]
M. Y. Cao, B. O. Rhee and C. I. Chung, Usefulness of the viscosity measurement of feedstock in powder injection molding, Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, v. 2 (1991) 59.
DOI: 10.1016/0026-0657(91)90999-h
Google Scholar
[15]
Y. Li, X. Li; Qu, B. Huang and G. Qiu, Rheological properties of metal injection molding binder and feedstock, Trans. Nonferrous Met. Soc. China, 7 (1997) 103.
Google Scholar
[16]
Li, Y.; Huang, B. and Qu, X., Viscosity and melt rheology of meal injection molding feedstocks, Powder Metall. 40(1) (1999) 86.
DOI: 10.1179/pom.1999.42.1.86
Google Scholar
[17]
Y. Li, B. Huang and X. Qu, Improvement of rheological and shape retention properties of wax-based MIM binder by multi-polymer components, Trans. Nonferrous Met. Soc. China, 9(1) (1999) 22.
Google Scholar
[18]
B. Huang, S. Liang. and X.J. Qu, The rheology of metal injection molding, Mat. Proc. Tech. 137 (2003) 132.
Google Scholar
[19]
K.A. Khalil, B.Y. Huang and Y.M. Li, Effect of thermo-mechanical properties of the PIM feedstock on the compacts shape retention during debinding process, Trans. Nonferrous Met. Soc. China, 11(4) (2001) 521.
Google Scholar
[20]
R. CI Chung, B,O, Rhee, Requirements of binder for powder injection molding, Compend. Met. Inject. Molding, 2 (1987) 269–277.
Google Scholar
[21]
Henmi et al., Process for producing molded ceramic or metal, Patent 4283360 (1981).
Google Scholar
[22]
Weich Jr and E. Raymond, Particulate material feedstock, use of said feedstock and product, Patent 4602953 (1985).
Google Scholar
[23]
M.J. Rosner, X. Zheng, M. Kojima, R.A. Posteraro and J.T. Lindt, A Note on the Rheology of Powder Injection Molding Compounds, Powder Injection Molding Symposium, (1992) 451-470.
Google Scholar
[24]
L.V. Dihoru, L.N. Smith and R.M. German, Experimental analysis and neural network modeling of the rheological behavior of powder injection molding feedstocks formed with bimodal powder mixtures.Powder Metall. 43 (1) (2000) 31.
DOI: 10.1179/pom.2000.43.1.31
Google Scholar
[25]
M.K. Agarwala, B.R. Patterson and P.E. Clark, Rheological behavoir of powder injection molding model slurries, J. Rheol. 36(2) (1992) 319.
DOI: 10.1122/1.550348
Google Scholar
[26]
M. Bayer and I. Nagl, I., Molding composition for the production of inorganic sintered products, Patent, 5254613 (1993).
Google Scholar
[27]
Menke et al., Binder for metal or ceramic powder, Patent 5098942 (1992).
Google Scholar
[28]
Ebenhoech et al., Thermoplastic compositions for producing metallic moldings, Patent 5362791 (1994).
Google Scholar
[29]
D.C. Krueger, J.S. Ebenhoch M. and Blomacher, Particulate Materials and Processes, Proceedings of the Fifth International Conference on Advanced Particulate Materials and Processes, (1997) 483.
Google Scholar
[30]
Takayama et al., Binder for use in metal powder injection molding and debinding method by the use of the same, Patent 5627258 (1997).
Google Scholar
[31]
Petcavith, Water soluble binders for large volume MIM production, Adv. Powder. Metall. Part. Mater. part 4, Metals powder Industries Federation, Princeton, New Jersey, USA, (2001) 452-456.
Google Scholar
[32]
R.M. German, Powder Injection Moulding, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, Princeton, NJ (1994).
Google Scholar
[33]
M.B. Roberfroid, Dietary fibre, inulin, and oligofructose: A review comparing their physiological effects, Crit. Rev. Food Sci. Nutr. Vol. 33, No. 2, (2009) 103-148.
DOI: 10.1080/10408399309527616
Google Scholar
[34]
F. Miremad, N.P. Shah, Applications of inulin and probiotics in health and nutrition, Int. Food Res. J., Vol. 19, No. 4 (2012), 1337-1350.
Google Scholar
[35]
A. Azza et al., Physico-chemical Properties of Inulin Produced from Jerusalem Artichoke Tubers on Bench and Pilot Plant Scale, Aust. J. Basic & Appl. Sci. 5(5) (2011) 1297-1309.
Google Scholar
[36]
I. Vijn, S. Smeekens, Fructan: More Than a Reserve Carbohydrate?. Plant Psichol. Vol. 120 (2012) 351-359.
DOI: 10.1104/pp.120.2.351
Google Scholar
[37]
L. Van, J. Loo, P. Coussement, L. DeLeenheer, H. Hoebregs, G. Smits, On the presence of inulin and oligofructose as natural ingredients in the Western diet, Crit. Rev. Food Sci. Nutr. Vol. 35 (2009) Published online, 525-552.
DOI: 10.1080/10408399509527714
Google Scholar
[38]
P. Denev, N. Delchev, G. Dobrev, I. Panchev, N. Kirchev, Isolation and characteristics of inulin from Jerusalem artichoke. Food and Sci. Vol. 3 (2010) 48-51.
Google Scholar
[39]
M.G. Dumitru, A. Ganescu, I. Dabuleanu, Obtaining the Edible Films with Natural Polymeric Matrix and Biologically Active Constituents Extracted from Plants, Mat. Plast. Vol. 53, No.3 (2016) 414-418.
Google Scholar
[40]
J. A. Robertson, F. D. de Monredon, P. Dysseler, F. Guillon, R. Amad`o, and J. F. Thibault, Hydration properties of dietary fibre and resistant starch: a European collaborative study, Food Sci. Technol. vol. 33, no. 2 (2010) pp.72-79.
DOI: 10.1006/fstl.1999.0595
Google Scholar
[41]
S. N. Ronkart, C. Deroanne, M. Paquot, C. Fougnies, J. C.Lambrechts, and C. S. Blecker, Characterization of the physical state of spray-dried inulin, Food Biophys. vol. 2, no. 2-3 (2007), 83-92.
DOI: 10.1007/s11483-007-9034-7
Google Scholar
[42]
J. Van Loo, P. Coussement, L. De Leenheer, H. Hoebregs & G. Smits, On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit. Rev. Food Sci. Nutr. 35 (1995) 525-552.
DOI: 10.1080/10408399509527714
Google Scholar
[43]
M.A. Bouazis ET AL., Chemical Composition, Functional Properties, and Effect of Inulin from Tunisian Agave americana L. Leaves on Textural Qualities of Pectin Gel, J. Chem. (2014) 11.
DOI: 10.1155/2014/758697
Google Scholar