[1]
H. Hermawan, D. Ramdan, J.R.P. Djuansjah, Metals for Biomedical Applications, in: R. Fazel (Ed.), Biomed. Eng. - From Theory to Appl., InTech, 2011: p.486. http://www.intechopen.com/books/biomedical-engineering-from-theory-toapplications.
DOI: 10.5772/19033
Google Scholar
[2]
N. Amanat, N.L. James, D.R. McKenzie, Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices, Med. Eng. Phys. 32 (2010) 690–699.
DOI: 10.1016/j.medengphy.2010.04.011
Google Scholar
[3]
G. Jiang, D.D. Zhou, Technology Advances and Challenges in Hermetic Packaging for Implantable Medical Devices, in: Implant. Neural Prostheses 2, 2009: p.27–61.
DOI: 10.1007/978-0-387-98120-8_2
Google Scholar
[4]
T. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications, Mater. Sci. Eng. A. 273–275 (1999) 149–160.
DOI: 10.1016/s0921-5093(99)00294-4
Google Scholar
[5]
T. Hanawa, Materials for metallic stents, J. Artif. Organs. 12 (2009) 73–79.
Google Scholar
[6]
D.S. Levi, R.J. Williams, J. Liu, S. Danon, L.L. Stepan, M.K. Panduranga, M.C. Fishbein, G.P. Carman, Thin film nitinol covered stents: design and animal testing., ASAIO J. 54 (2008) 221–6.
DOI: 10.1097/mat.0b013e31816b43b0
Google Scholar
[7]
G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Coronary stents: A materials perspective, Biomaterials. 28 (2007) 1689–1710.
DOI: 10.1016/j.biomaterials.2006.11.042
Google Scholar
[8]
B. Szabó, J. Dobránszky, L. Major, Z. Nyitrai, Development and Micro Manufacturing of Coronary Stents in Hungary, Core.Kmi.Open.Ac.Uk. (2007). http://core.kmi.open.ac.uk/download/pdf/11857675.pdf.
Google Scholar
[9]
K. Yang, Y. Ren, P. Wan, High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material, Sci. China Technol. Sci. 55 (2012) 329–340.
DOI: 10.1007/s11431-011-4679-3
Google Scholar
[10]
Z. Paszenda, Use of coronary stents - material and biophysical conditions, J. Achiev. Mater. Manuf. Eng. 43 (2010) 125–135.
Google Scholar
[11]
Y. Nakamura, A. Matsui, T. Saito, K. Yoshimoto, Shape-memory-alloy active forceps for laparoscopic surgery, in: Proc. - IEEE Int. Conf. Robot. Autom., 1995: p.2320–2327.
DOI: 10.1109/robot.1995.525607
Google Scholar
[12]
C.W. Chan, H.C. Man, T.M. Yue, Parameter optimization for laser welding of NiTi wires by the taguchi method, Lasers Eng. 30 (2015).
Google Scholar
[13]
A. Falvo, F.M. Furgiuele, C. Maletta, Laser welding of a NiTi alloy: Mechanical and shape memory behaviour, Mater. Sci. Eng. A. 412 (2005) 235–240.
DOI: 10.1016/j.msea.2005.08.209
Google Scholar
[14]
P. Girish, P. Kelkar, Resistance and Laser Welding for Medical Devices, Med. Device Diagnostics. 1 (2006) 1–14.
Google Scholar
[15]
H. Gugel, A. Schuermann, W. Theisen, Laser welding of NiTi wires, Mater. Sci. Eng. A. 481–482 (2008) 668–671.
DOI: 10.1016/j.msea.2006.11.179
Google Scholar
[16]
M.I. Khan, S.K. Panda, Y. Zhou, Effects of Welding Parameters on the Mechanical Performance of Laser Welded Nitinol, Mater. Trans. 49 (2008) 2702–2708.
DOI: 10.2320/matertrans.mra2008243
Google Scholar
[17]
N.J. Noolu, H.W. Kerr, Y. Zhou, J. Xie, Laser weldability of Pt and Ti alloys, Mater. Sci. Eng. A. 397 (2005) 8–15.
DOI: 10.1016/j.msea.2004.12.044
Google Scholar
[18]
P. Sevilla, F. Martorell, C. Libenson, J.A. Planell, F.J. Gil, Laser welding of NiTi orthodontic archwires for selective force application, J. Mater. Sci. Mater. Med. 19 (2008) 525–529.
DOI: 10.1007/s10856-007-0164-8
Google Scholar
[19]
A.-V. Bîrdeanu, Contributions to laser material processing, BID - ISIM Weld. Mater. Test. (2013). http://bid-isim.ro/bid_arhiva/bid2013/birdeanu_3-2013.pdf.
Google Scholar
[20]
G. Gruionu, D. Bazou, N. Maimon, M. Onita-Lenco, L.G. Gruionu, P. Huang, L.L. Munn, Implantable tissue isolation chambers for analyzing tumor dynamics in vivo, Lab Chip. 16 (2016) 1840–1851.
DOI: 10.1039/c6lc00237d
Google Scholar
[21]
L. Gruionu, A. Saftoiu, G. Gruionu, A novel fusion imaging system for endoscopic ultrasound, Endosc. Ultrasound. 5 (2016) 35.
DOI: 10.4103/2303-9027.175882
Google Scholar
[22]
B. Katona, E. Bognár, B. Berta, P. Nagy, K. Hirschberg, Chemical etching of nitinol stents, Acta Bioeng. Biomech. 15 (2013) 3–8.
Google Scholar