Processing Technologies Applied for Realizing New Medical Micro-Devices Components

Article Preview

Abstract:

The paper presents the new methods of use of processing technologies for realizing proof-of-concept new medical micro-devices components. By using both classical mechanical machining and unconventional laser beam cutting and welding combined with soldering two proof-of-concept medical devices components were realized. The materials processed were stainless steel and super-elastic nitinol alloy. The selection of the processing technologies was done based on the specific requirements of the devices components as well as the characteristics of the applied materials. The selected technologies were fit for the requirements of the proof-of-concept medical micro-devices components, further RTD work being needed in order to comply with the bio-compatibility and in-exploitation requirements. The specific outcomes of using classical mechanical machining and laser beam processing are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-102

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hermawan, D. Ramdan, J.R.P. Djuansjah, Metals for Biomedical Applications, in: R. Fazel (Ed.), Biomed. Eng. - From Theory to Appl., InTech, 2011: p.486. http://www.intechopen.com/books/biomedical-engineering-from-theory-toapplications.

DOI: 10.5772/19033

Google Scholar

[2] N. Amanat, N.L. James, D.R. McKenzie, Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices, Med. Eng. Phys. 32 (2010) 690–699.

DOI: 10.1016/j.medengphy.2010.04.011

Google Scholar

[3] G. Jiang, D.D. Zhou, Technology Advances and Challenges in Hermetic Packaging for Implantable Medical Devices, in: Implant. Neural Prostheses 2, 2009: p.27–61.

DOI: 10.1007/978-0-387-98120-8_2

Google Scholar

[4] T. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications, Mater. Sci. Eng. A. 273–275 (1999) 149–160.

DOI: 10.1016/s0921-5093(99)00294-4

Google Scholar

[5] T. Hanawa, Materials for metallic stents, J. Artif. Organs. 12 (2009) 73–79.

Google Scholar

[6] D.S. Levi, R.J. Williams, J. Liu, S. Danon, L.L. Stepan, M.K. Panduranga, M.C. Fishbein, G.P. Carman, Thin film nitinol covered stents: design and animal testing., ASAIO J. 54 (2008) 221–6.

DOI: 10.1097/mat.0b013e31816b43b0

Google Scholar

[7] G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Coronary stents: A materials perspective, Biomaterials. 28 (2007) 1689–1710.

DOI: 10.1016/j.biomaterials.2006.11.042

Google Scholar

[8] B. Szabó, J. Dobránszky, L. Major, Z. Nyitrai, Development and Micro Manufacturing of Coronary Stents in Hungary, Core.Kmi.Open.Ac.Uk. (2007). http://core.kmi.open.ac.uk/download/pdf/11857675.pdf.

Google Scholar

[9] K. Yang, Y. Ren, P. Wan, High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material, Sci. China Technol. Sci. 55 (2012) 329–340.

DOI: 10.1007/s11431-011-4679-3

Google Scholar

[10] Z. Paszenda, Use of coronary stents - material and biophysical conditions, J. Achiev. Mater. Manuf. Eng. 43 (2010) 125–135.

Google Scholar

[11] Y. Nakamura, A. Matsui, T. Saito, K. Yoshimoto, Shape-memory-alloy active forceps for laparoscopic surgery, in: Proc. - IEEE Int. Conf. Robot. Autom., 1995: p.2320–2327.

DOI: 10.1109/robot.1995.525607

Google Scholar

[12] C.W. Chan, H.C. Man, T.M. Yue, Parameter optimization for laser welding of NiTi wires by the taguchi method, Lasers Eng. 30 (2015).

Google Scholar

[13] A. Falvo, F.M. Furgiuele, C. Maletta, Laser welding of a NiTi alloy: Mechanical and shape memory behaviour, Mater. Sci. Eng. A. 412 (2005) 235–240.

DOI: 10.1016/j.msea.2005.08.209

Google Scholar

[14] P. Girish, P. Kelkar, Resistance and Laser Welding for Medical Devices, Med. Device Diagnostics. 1 (2006) 1–14.

Google Scholar

[15] H. Gugel, A. Schuermann, W. Theisen, Laser welding of NiTi wires, Mater. Sci. Eng. A. 481–482 (2008) 668–671.

DOI: 10.1016/j.msea.2006.11.179

Google Scholar

[16] M.I. Khan, S.K. Panda, Y. Zhou, Effects of Welding Parameters on the Mechanical Performance of Laser Welded Nitinol, Mater. Trans. 49 (2008) 2702–2708.

DOI: 10.2320/matertrans.mra2008243

Google Scholar

[17] N.J. Noolu, H.W. Kerr, Y. Zhou, J. Xie, Laser weldability of Pt and Ti alloys, Mater. Sci. Eng. A. 397 (2005) 8–15.

DOI: 10.1016/j.msea.2004.12.044

Google Scholar

[18] P. Sevilla, F. Martorell, C. Libenson, J.A. Planell, F.J. Gil, Laser welding of NiTi orthodontic archwires for selective force application, J. Mater. Sci. Mater. Med. 19 (2008) 525–529.

DOI: 10.1007/s10856-007-0164-8

Google Scholar

[19] A.-V. Bîrdeanu, Contributions to laser material processing, BID - ISIM Weld. Mater. Test. (2013). http://bid-isim.ro/bid_arhiva/bid2013/birdeanu_3-2013.pdf.

Google Scholar

[20] G. Gruionu, D. Bazou, N. Maimon, M. Onita-Lenco, L.G. Gruionu, P. Huang, L.L. Munn, Implantable tissue isolation chambers for analyzing tumor dynamics in vivo, Lab Chip. 16 (2016) 1840–1851.

DOI: 10.1039/c6lc00237d

Google Scholar

[21] L. Gruionu, A. Saftoiu, G. Gruionu, A novel fusion imaging system for endoscopic ultrasound, Endosc. Ultrasound. 5 (2016) 35.

DOI: 10.4103/2303-9027.175882

Google Scholar

[22] B. Katona, E. Bognár, B. Berta, P. Nagy, K. Hirschberg, Chemical etching of nitinol stents, Acta Bioeng. Biomech. 15 (2013) 3–8.

Google Scholar