Complementarity between Solar and Wind Energy Potentials in Benin Republic

Article Preview

Abstract:

This paper presents a study to show the complementarity between solar and wind energy potentials in Benin Republic. Daily wind speed data in the coast of Cotonou city, precisely in Cadjehoun district, has been used to assess wind energy potential. Solar potential is evaluated using spatio temporal daily solar radiation data covering the country. In this research, we have found the locations offering optimal complementarity between solar and wind energy. The complementarity is measured with Pearson correlation coefficient, which is used as objective function to be minimized. The optimization method used is Particle Swarm Optimization (PSO), which has been implemented in Matlab®. We showed that an optimal complementarity is obtained between the coast of Cotonou in the ‘Littoral’ department and the central part of the country in the ‘Collines’ department.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-138

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf.

Google Scholar

[2] http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report.pdf.

Google Scholar

[3] Y. Liu, L. Xiao, H. Wang, S. Dai, and Z. Qi, Analysis on the hourly spatiotemporal complementarities between China's solar and wind energy resources spreading in a wide area,, Sci. China Technol. Sci., vol. 56, no. 3, p.683–692, Mar. (2013).

DOI: 10.1007/s11431-012-5105-1

Google Scholar

[4] A. R. Silva, F. M. Pimenta, A. T. Assireu, and M. H. C. Spyrides, Complementarity of Brazil׳s hydro and offshore wind power,, Renew. Sustain. Energy Rev., vol. 56, p.413–427, Apr. (2016).

DOI: 10.1016/j.rser.2015.11.045

Google Scholar

[5] C. E. Hoicka and I. H. Rowlands, Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada,, Renew. Energy, vol. 36, no. 1, p.97–107, Jan. (2011).

DOI: 10.1016/j.renene.2010.06.004

Google Scholar

[6] C. N. Awanou, J. M. Degbey, and E. Ahlonsou, Estimation of the mean wind energy available in Benin (Ex Dahomey),, Renew. Energy, vol. 1, no. 5–6, p.845–853, (1991).

DOI: 10.1016/0960-1481(91)90037-p

Google Scholar

[7] A. B. Akpo, J. C. T. Damada, H. E. V. Donnou, B. Kounouhewa, and C. N. Awanou, Evaluation de la production énergétique d'un aérogénérateur sur un site isolé dans la région côtière du Bénin,, Rev. Energ. Renouvelables, vol. 18, no. 3, p.457–468, (2015).

Google Scholar

[8] A. M. Houekpoheha, B. B. Kounouhewa, N. B. Tokpohozin, and C. N. Awanou, Estimation de la puissance énergétique éolienne à partir de la distribution de Weibull sur la côte béninoise à Cotonou dans le Golfe de Guinée,, Rev. Energ. Renouvelables, vol. 17, no. 3, p.489–495, (2014).

DOI: 10.1515/9783112315378-011

Google Scholar

[9] Wyoming Weather Web., [Online]. Available: http://weather.uwyo.edu/upperair/. [Accessed: 14-Mar-2017].

Google Scholar

[10] U. Pfeifroth et al., Surface Radiation Data Set - Heliosat (SARAH) - Edition 2., Satellite Application Facility on Climate Monitoring (CM SAF), (2017).

Google Scholar

[11] Y. Liu, L. Xiao, H. Wang, L. Lin, and S. Dai, Investigation on the spatiotemporal complementarity of wind energy resources in China,, Sci. China Technol. Sci., vol. 55, no. 3, p.725–734, (2012).

DOI: 10.1007/s11431-011-4678-4

Google Scholar

[12] M. P. Cantão, M. R. Bessa, R. Bettega, D. H. M. Detzel, and J. M. Lima, Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps,, Renew. Energy, vol. 101, p.1215–1225, Feb. (2017).

DOI: 10.1016/j.renene.2016.10.012

Google Scholar

[13] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory," in , Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ,95, 1995, p.39–43.

DOI: 10.1109/mhs.1995.494215

Google Scholar

[14] M. Clerc and J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space,, IEEE Trans. Evol. Comput., vol. 6, no. 1, p.58–73, Feb. (2002).

DOI: 10.1109/4235.985692

Google Scholar

[15] Mahamad Nabab Alam, Particle Swarm Optimization: Algorithm and its Codes in MATLAB,, (2016).

Google Scholar