[1]
Aleksandra Szcześ, Lucyna Hołysz and Emil Chibowski, Synthesis of hydroxyapatite for biomedical applications, Advances in Colloid and Interface Science, 99 (2217) 235–239.
DOI: 10.1016/j.cis.2017.04.007
Google Scholar
[2]
V Bhadang, K.A. et al., 2010. Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomaterialia, 6(4), p.1575.
DOI: 10.1016/j.actbio.2009.10.029
Google Scholar
[3]
F. Ghomi, S. Jalilifiroozinezhad, and M. Azami, New precipitation method for synthesis of nano-fluorapatite,, Materials Research Innovations, vol. 17, no. 4, p.257–262, Jun. (2013).
DOI: 10.1179/1433075x12y.0000000071
Google Scholar
[4]
C.J. Tredwin, A.M. Young, G.Georgiou, S.-H. Shin, H.W. Kim, and J. C. Knowles, Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method. Optimisation, characterisation and rheology,, Dental Materials, vol. 29, no. 2, p.166–173, Feb. (2013).
DOI: 10.1016/j.dental.2012.11.008
Google Scholar
[5]
J. Shen, B. Jin, Q. Jiang, Y. Hu, and X. Wang, Morphology-controlled synthesis of fluorapatite nano/microstructures via surfactant-assisted hydrothermal process,, Materials & Design, vol. 97, p.204–212, May (2016).
DOI: 10.1016/j.matdes.2016.02.091
Google Scholar
[6]
Z. Fereshteh, M. Fathi, and R. Mozaffarinia, Synthesis and Characterization of Fluorapatite Nanoparticles via a Mechanochemical Method,, Journal of Cluster Science, vol. 26, no. 4, p.1041–1053, Nov. (2014).
DOI: 10.1007/s10876-014-0793-2
Google Scholar
[7]
Brown, M. E., Maciejewski, M. and Vyazovkin, S., Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochimica Acta, 2000, 355, 125–143.
Google Scholar
[8]
R.Ebrahimi-Kahrizsangi, B. Nasiri-Tabrizi, and A. Chami, Characterization of single-crystal fluorapatite nanoparticles synthesized via mechanochemical method,, Particuology, vol. 9, no. 5, p.537–544, Oct. (2011).
DOI: 10.1016/j.partic.2011.07.001
Google Scholar
[9]
S. Vyazovkin, Computational aspects of kinetic analysis: Part C. The ICTAC Kinetics Project — the light at the end of the tunnel?, Thermochimica Acta, vol. 355, no. 1–2, p.155–163, Jul. (2000).
DOI: 10.1016/s0040-6031(00)00445-7
Google Scholar
[10]
A.Khawam, Application of solid-state kinetics to desolvation reactions, Theses and Dissertations University of Iowa, (2007).
Google Scholar
[11]
Sergey Vyazovkin (auth.)-Isoconversional Kinetics of Thermally Stimulated Processes-Springer International Publishing (2015).
Google Scholar
[12]
S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data,, Thermochimica Acta, vol. 520, no. 1–2, p.1–19, Jun. (2011).
DOI: 10.1016/j.tca.2011.03.034
Google Scholar
[13]
H. V. Maulding and M. A. Zoglio, Flexible Nonisothermal Stability Studies,, Journal of Pharmaceutical Sciences, vol. 59, no. 3, p.333–337, Mar. (1970).
DOI: 10.1002/jps.2600590312
Google Scholar
[14]
S. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,, Thermochimica Acta, vol. 590, p.1–23, Aug. (2014).
DOI: 10.1016/j.tca.2014.05.036
Google Scholar
[15]
S.Vyazovkin, C.A. Wight, Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, International Reviews in Physical Chemistry, 17 (1999) 407- 433.
DOI: 10.1080/014423598230108
Google Scholar
[16]
G.I. Senum, R.T. Yang, Rational approximations of the integral of the Arrhenius function, Journal of thermal analysis and calorimetry, 11 (1977) 445-447.
DOI: 10.1007/bf01903696
Google Scholar
[17]
A.W. Coats, J.P. Redfern, Kinetic parameters from thermogeravimeteric data, Nature, 201 (1964) 68-69.
DOI: 10.1038/201068a0
Google Scholar
[18]
A.W. Coats, J.P. Redfern, Kinetic parameters from thermogeravimeteric data II, Journal of Polymer Science Part B: Polymer Letters, 3 (1965) 917-920.
DOI: 10.1002/pol.1965.110031106
Google Scholar
[19]
P.W.M. Jacobs, F.C. Tompkins, Chemistry of the Solid State, in: W.E. Garner (Eds.) ,London: Butterworth,1955, p.187.
Google Scholar
[20]
J. Pysiak, in: Heterogeneous Chemical Reactions, Nauka i Tekhnika, Minsk, 1970, p.71 (in Russian).
Google Scholar
[21]
S. Vyazovkin, W. Linert, Reliability of conversion-time dependencies as predicted from thermal analysis data, Analytica Chimica Acta, 295 (1994) 101-107.
DOI: 10.1016/0003-2670(94)80339-0
Google Scholar
[22]
C.D. Doyle, Kinetic analysis of thermogravimetric data, Journal of Applied Polymer Science, 5 (1961) 285.
Google Scholar
[23]
S. Vyazovkin, Computational aspects of kinetic analysis. Part A. The ICTAC kinetics project-data, methods and results,, Thermochimica Acta, 355 (2000) 125-143.
Google Scholar
[24]
A.K. Burnham, R.L. Braun, Global kinetic analysis of compelex materials, Energy Fuels, 13 (1999) 1-22.
Google Scholar
[25]
A. A. Jain, A. Mehra, and V. V. Ranade, Processing of TGA data: Analysis of isoconversional and model fitting methods,, Fuel, vol. 165, p.490–498, Feb. (2016).
DOI: 10.1016/j.fuel.2015.10.042
Google Scholar
[26]
Friedman .H.L, New methods for evaluating kinetic parameters from thermal analysis data ,, J. Polym. Sci., Part C: Polym. Lett.Vol. 6, pp.183-195, (1964).
Google Scholar
[27]
N. Sbirrazzuoli, Is the Friedman Method Applicable to Transformations with Temperature Dependent Reaction Heat?, Macromolecular Chemistry and Physics, vol. 208, no. 14, p.1592–1597, Jul. (2007).
DOI: 10.1002/macp.200700100
Google Scholar
[28]
Ozawa T, A New Method of Analyzing Thermogravimetric Data ,, Bull. Chem. Soc. Jpn.Vol. 38, pp.1881-1886, 1965.
Google Scholar
[29]
Flynn. J.H and Wall. L.A, A quick, direct method for the determination of activation energy from thermogravimetric data,, J. Polym. Sci., Part B: Polym. Lett.Vol. 4, pp.323-328, (1966).
DOI: 10.1002/pol.1966.110040504
Google Scholar
[30]
Kissinger.H.E, Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis, J. Res. Nat. Bur. Stand.Vol. 57, pp.217-221, 1956.
DOI: 10.6028/jres.057.026
Google Scholar
[31]
Kissinger.H.E, Reaction Kinetics in Differential Thermal Analysis ,Anal. Chem.Vol. 29,pp.1702-1706, (1957).
DOI: 10.1021/ac60131a045
Google Scholar
[32]
A. Ortega, A simple and precise linear integral method for isoconversional data,, Thermochimica Acta, vol. 474, no. 1–2, p.81–86, Aug. (2008).
DOI: 10.1016/j.tca.2008.05.003
Google Scholar
[33]
Y.Han, T.Li, and K.Saito, A modified Ortega method to evaluate the activation energies of solid state reactions,, Journal of Thermal Analysis and Calorimetry, vol. 112, no. 2, p.683–687, Aug. (2012).
DOI: 10.1007/s10973-012-2591-0
Google Scholar
[34]
S. Vyazovkin, D. Dollimore, Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids, Journal of Chemical Information and Computer Sciences, 36 (1996) 42-45.
DOI: 10.1021/ci950062m
Google Scholar
[35]
S. Vyazovkin, Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature, Journal of Computational Chemistry. 18 (1997) 393-402.
DOI: 10.1002/(sici)1096-987x(199702)18:3<393::aid-jcc9>3.0.co;2-p
Google Scholar
[36]
S.Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy, Journal of Computational Chemistry, 22 (2001) 178-183.
DOI: 10.1002/1096-987x(20010130)22:2<178::aid-jcc5>3.0.co;2-#
Google Scholar
[37]
P.Budrugeac, E. Segal, Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid-gas reactions, international journal of chemical kinetics, 33 (2001) 564-573.
DOI: 10.1002/kin.1052
Google Scholar
[38]
S. Vyazovkin, Model-free kinetics Staying free of multiplying entities without necessity, Journal of Thermal Analysis and Calorimetry, 83 (2006) 45–51.
DOI: 10.1007/s10973-005-7044-6
Google Scholar
[39]
S.Vyazovkin, Some Methodological Problems Concerning Nonisothermal Kinetic Analysis of Heterogeneous Solid–Gas Reactions, international journal of chemical kinetics. 34 (2002) 418-420.
DOI: 10.1002/kin.10068
Google Scholar
[40]
S. Vyazovkin, A.I. Lesnikovich, Estimation of the pre-exponential factor in the isoconvertional calculation of effective kinetic parameters, Thermochimica Acta. 128 (1988) 297-300.
DOI: 10.1016/0040-6031(88)85372-3
Google Scholar
[41]
S. Vyazovkin, W. Linert, False isokinetic relationships found in the nonisothermal decomposition of solids, Chemical Physics. 193 (1995) 109-118.
DOI: 10.1016/0301-0104(94)00402-v
Google Scholar
[42]
S.Vyazovkin, Handbook of thermal analysis, Chapter 13, Vol.5, New York, 2008, pp.503-538.
Google Scholar
[43]
B. Janković, B. Adnađević, and J. Jovanović, Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis,, Thermochimica Acta, vol. 452, no. 2, p.106–115, Jan. (2007).
DOI: 10.1016/j.tca.2006.07.022
Google Scholar
[44]
JiříMálek, The kinetic analysis of non-isothermal data, Thermochimica Acta, Volume 200, 8 July 1992, Pages 257-269.
DOI: 10.1016/0040-6031(92)85118-f
Google Scholar
[45]
E. H. Kim, J. J. Park, J. H. Park, I. S. Chang, and C. S. Choi, A new master plot using the differential method in kinetic analysis of non-isothermal TG data,, Thermochimica Acta, vol. 196, no. 2, p.495–502, Feb. (1992).
DOI: 10.1016/0040-6031(92)80111-9
Google Scholar
[46]
S. O. Kamphorst and J. K. L. da Silva, The Kinetics of Fragmentation Processes with Mass Loss,, Europhysics Letters (EPL), vol. 21, no. 3, p.261–266, Jan. (1993).
DOI: 10.1209/0295-5075/21/3/002
Google Scholar
[47]
G. Deng, Y. Zhang, C. Ye, Z. Qiang, G. E. Stein, K. A. Cavicchi, and B. D. Vogt, Bicontinuous mesoporous carbon thin films via an order–order transition,, Chem. Commun., vol. 50, no. 84, p.12684–12687, (2014).
DOI: 10.1039/c4cc02471k
Google Scholar
[48]
Y. Zhang, Z. Qiang, and B. D. Vogt, Relationship between crosslinking and ordering kinetics for the fabrication of soft templated (FDU-16) mesoporous carbon thin films,, RSC Adv., vol. 4, no. 85, p.44858–44867, Sep. (2014).
DOI: 10.1039/c4ra08316d
Google Scholar
[49]
G. Deng, Z. Qiang, W. Lecorchick, K. A. Cavicchi, and B. D. Vogt, Nanoporous Nonwoven Fibril-Like Morphology by Cooperative Self-Assembly of Poly(ethylene oxide)-block-Poly(ethyl acrylate)-block-Polystyrene and Phenolic Resin,, Langmuir, vol. 30, no. 9, p.2530–2540, Feb. (2014).
DOI: 10.1021/la404964c
Google Scholar
[50]
B.Nasiri-Tabrizi and A.Fahami, Reaction mechanisms of synthesis and decomposition of fluorapatite–zirconia composite nanopowders,, Ceramics International, vol. 39, no. 5, p.5125–5136, Jul. (2013).
DOI: 10.1016/j.ceramint.2012.12.008
Google Scholar
[51]
G.Mishra, J. Kumar, and T. Bhaskar, Kinetic studies on the pyrolysis of pinewood,, Bioresource Technology, vol. 182, p.282–288, Apr. (2015).
DOI: 10.1016/j.biortech.2015.01.087
Google Scholar
[52]
M. Khachani, A. El Hamidi, M. Halim, S. Arsalane, Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2, J. Mater. Environ. Sci. 5 (2) (2014) 615-624.
Google Scholar
[53]
Pradyot Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill, (2003).
Google Scholar
[54]
I.-H. Jung and P. Hudon, Thermodynamic Assessment of P2O5,, Journal of the American Ceramic Society, vol. 95, no. 11, p.3665–3672, Aug. (2012).
Google Scholar
[55]
J. A. Rard and T. J. Wolery, The Standard Chemical-Thermodynamic Properties of Phosphorus and Some of its Key Compounds and Aqueous Species: An Evaluation of Differences between the Previous Recommendations of NBS/NIST and CODATA,, Journal of Solution Chemistry, vol. 36, no. 11–12, p.1585–1599, Oct. (2007).
DOI: 10.1007/s10953-007-9205-7
Google Scholar
[56]
Y.-Y. Qi.Y.Cheng, M.Liu, X.-R.Chen, and L.-C. Cai, Phase transition and thermodynamic properties of CaF2 via first principles,, Physica B: Condensed Matter, vol. 426, p.13–19, Oct. (2013).
DOI: 10.1016/j.physb.2013.05.033
Google Scholar
[57]
G. González, A. Sagarzazu, and R. Villalba, Mechanochemical transformation of mixtures of Ca (OH) 2 and (NH4)2HPO4 or P2O5,, Materials Research Bulletin, vol. 41, no. 10, p.1902–1916, Oct. (2006).
DOI: 10.1016/j.materresbull.2006.03.004
Google Scholar
[58]
W.Kim, Q.Zhang, F.Saito, Mechanochemical synthesis of hydroxyapatite from Ca (OH) 2-P2O5 and CaO-Ca (OH) 2-P2O5 mixtures,, JOURNAL OF MATERIALS SCIENCE 35 (2000) 5401 – 5405.
DOI: 10.3390/nano10112232
Google Scholar
[59]
S. Kannan, A. Rebelo, A. F. Lemos, A. Barba, and J. M. F. Ferreira, Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites,, Journal of the European Ceramic Society, vol. 27, no. 5, p.2287–2294, Jan. (2007).
DOI: 10.1016/j.jeurceramsoc.2006.07.004
Google Scholar
[60]
K. Tõnsuaadu, K. A. Gross, L. Plūduma, and M. Veiderma, A review on the thermal stability of calcium apatites,, Journal of Thermal Analysis and Calorimetry, vol. 110, no. 2, p.647–659, Sep. (2011).
DOI: 10.1007/s10973-011-1877-y
Google Scholar
[61]
R. Ebrahimi-Kahrizsangi, M.H. Abbasi, Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA, Transactions of Nonferrous Metals Society of China, 18 (2008) 217-221.
DOI: 10.1016/s1003-6326(08)60039-4
Google Scholar
[62]
A. K. Burnham and R. L. Braun, Global Kinetic Analysis of Complex Materials,, Energy & Fuels, vol. 13, no. 1, p.1–22, Jan. (1999).
Google Scholar
[63]
S. V. Vyazovkin and A. I. Lesnikovich, An approach to the solution of the inverse kinetic problem in the case of complex processes,, Thermochimica Acta, vol. 165, no. 2, p.273–280, Aug. (1990).
DOI: 10.1016/0040-6031(90)80227-p
Google Scholar
[64]
J.A. Caballero, J.A. Conesa. Mathematical considerations for nonisothermal kinetics in thermal decomposition, J Anal Appl Pyrolysis, (2005), 73: p.85−100.
DOI: 10.1016/j.jaap.2004.12.003
Google Scholar
[65]
A. Khawam and D. R. Flanagan, Solid-State Kinetic Models: Basics and Mathematical Fundamentals,, The Journal of Physical Chemistry B, vol. 110, no. 35, p.17315–17328, Sep. (2006).
DOI: 10.1021/jp062746a
Google Scholar
[66]
S.Vyazovkin, on the phenomenon of variable activation energy for condensed phase reactions, New Journal of Chemistry, 24 (2000) 913-917.
DOI: 10.1039/b004279j
Google Scholar
[67]
A.K. Galwey, What is meant by the term variable activation energy' when applied in the kinetic analyses of solid state decompositions (crystolysis reactions), Thermochimica Acta, 397 (2003)249-268.
DOI: 10.1016/s0040-6031(02)00271-x
Google Scholar
[68]
S. V. Vyazovkin, V. I. Goryachko, and A. I. Lesnikovich, An approach to the solution of the inverse kinetic problem in the case of complex processes. Part III. Parallel independent reactions,, Thermochimica Acta, vol. 197, no. 1, p.41–51, Mar. (1992).
DOI: 10.1016/0040-6031(92)87037-b
Google Scholar
[69]
S. Vyazovkin, Conversion dependence of activation energy for model DSC curves of consecutive reactions,, Thermochimica Acta, vol. 236, p.1–13, May (1994).
DOI: 10.1016/0040-6031(94)80249-1
Google Scholar
[70]
D.W. Readey, Kinetics in materials science and engineering, CRC Press, (2017).
Google Scholar
[71]
T. Wang, A. Dorner-Reisel, and E. Müller, Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder,, Journal of the European Ceramic Society, vol. 24, no. 4, p.693–698, Apr. (2004).
DOI: 10.1016/s0955-2219(03)00248-6
Google Scholar