The Influence of Boundary Condition on the Impact Behavior of High Performance Fabrics

Article Preview

Abstract:

Boundary condition is an important factor for the impact behavior of fabrics. In the present work, the effect of boundary condition on the impact behavior of fabrics was investigated modeling the impact conditions in a finite element software program. In the numerical simulations, fabric boundary condition and impact velocity were used as variable parameters and their effects were discussed in terms of fabric deformation and energy absorption capacity. Based on the study, the significance of boundary condition gradually diminishes as impact velocity increases. However, at low velocities, fabrics with free edges provide enhanced energy absorption performance in comparison to those with fixed edges. In addition, fabric deformation turns to local scale increasing impact velocity however, at low velocities, deformation is extended over a wider area on the fabrics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-54

Citation:

Online since:

June 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. L. Phoenix, P. K. Porwal, A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems, Int. J. Solids Struct., 40 (2003) 6723–6765.

DOI: 10.1016/s0020-7683(03)00329-9

Google Scholar

[2] Y. Duan, M. Keefe, T. A. Bogetti, B. Powers, Finite element modeling of transverse impact on a ballistic fabric, Int. J. Mech. Sci., 48, (2006) 33–43.

DOI: 10.1016/j.ijmecsci.2005.09.007

Google Scholar

[3] B. L. Lee, J. W. Song, J. E. Ward, Failure of Spectra® Polyethylene Fiber-Reinforced Composites under Ballistic Impact Loading, J. Compos. Mater., 28, (1994) 1202–1226.

DOI: 10.1177/002199839402801302

Google Scholar

[4] N. K. Naik, P. Shrirao, Composite structures under ballistic impact, Compos. Struct., 66 (2004) 579–590.

DOI: 10.1016/j.compstruct.2004.05.006

Google Scholar

[5] M. P. Flanagan, M. A. Zikry, J. W. Wall, A. El-Shiekh, An Experimental Investigation of High Velocity Impact and Penetration Failure Modes in Textile Composites, J. Compos. Mater., 33, (1999) 1080–1103.

DOI: 10.1177/002199839903301202

Google Scholar

[6] J. N. Baucom, M. A. Zikry, Low-velocity impact damage progression in woven E-glass composite systems, Compos. Part Appl. Sci. Manuf., 36, (2005) 658–664.

DOI: 10.1016/j.compositesa.2004.07.008

Google Scholar

[7] X. Wang, Low velocity impact properties of 3D woven basalt/aramid hybrid composites, Compos. Sci. Technol., 68, (2008) 444–450.

DOI: 10.1016/j.compscitech.2007.06.016

Google Scholar

[8] C. Ha-Minh, F. Boussu, T. Kanit, D. Crépin, A. Imad, Analysis on failure mechanisms of an interlock woven fabric under ballistic impact, Eng. Fail. Anal., 18, (2011) 2179–2187.

DOI: 10.1016/j.engfailanal.2011.07.011

Google Scholar

[9] E. Gellert, S. Cimpoeru, R. Woodward, A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites, Int. J. Impact Eng., 24 (2000) 445–456.

DOI: 10.1016/s0734-743x(99)00175-x

Google Scholar

[10] S. Gürgen, M. C. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids, Polym. Test., 64 (2017) 296–306.

DOI: 10.1016/j.polymertesting.2017.11.003

Google Scholar

[11] S. Gürgen, M. C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Compos. Part Appl. Sci. Manuf., 94 (2017) 50–60.

DOI: 10.1016/j.compositesa.2016.12.019

Google Scholar

[12] S. Gürgen, M. C. Kuşhan, The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics, Mech. Adv. Mater. Struct., 24 (2017) 1381–1390.

DOI: 10.1080/15376494.2016.1231355

Google Scholar

[13] S. Gürgen, M. C. Kuşhan, W. Li, The effect of carbide particle additives on rheology of shear thickening fluids, Korea-Aust. Rheol. J., 28 (2016) 121–128.

DOI: 10.1007/s13367-016-0011-x

Google Scholar

[14] S. Gürgen, W. Li, M. C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives, Mater. Des., 104 (2016) 312–319.

DOI: 10.1016/j.matdes.2016.05.055

Google Scholar

[15] S. Gürgen, M. C. Kuşhan, Rheological Properties of Shear Thickening Fluids, J Polytechnic, 19 (2016) 409–414.

Google Scholar

[16] S. Gürgen, M. C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review, Prog. Polym. Sci., 75 (2017) 48–72.

DOI: 10.1016/j.progpolymsci.2017.07.003

Google Scholar

[17] M. H. Malakooti, H. S. Hwang, N. C. Goulbourne, H. A. Sodano, Role of ZnO nanowire arrays on the impact response of aramid fabrics, Compos. Part B Eng., 127 (2017) 222–231.

DOI: 10.1016/j.compositesb.2017.05.084

Google Scholar

[18] H. Talebi, S. V. Wong, A. M. S. Hamouda, Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric, Compos. Struct., 87 (2009) 314–320.

DOI: 10.1016/j.compstruct.2008.02.009

Google Scholar

[19] R. Barauskas, A. Abraitienė, Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA, Int. J. Impact Eng., 34 (2007) 1286–1305.

DOI: 10.1016/j.ijimpeng.2006.06.002

Google Scholar

[20] B. Gu, J. Xu, Finite element calculation of 4-step 3-dimensional braided composite under ballistic perforation, Compos. Part B Eng., 35 (2004) 291–297.

DOI: 10.1016/j.compositesb.2004.01.001

Google Scholar

[21] R. C. Laible, Ballistic materials and penetration mechanics. Elsevier, (1980).

Google Scholar

[22] P. Sriram, Ballistic protective clothing: An overview, Ind. J. Fib. Tex. Res., 22 (1997) 274–291.

Google Scholar

[23] M. Miao, J. H. Xin, Engineering of high-performance textiles. Elsevier, (2018).

Google Scholar

[24] S. Gürgen, M. C. Kuşhan, High Performance Fabrics in Body Protective Systems, Mater. Sci. Forum, 880 (2016) 132–135.

DOI: 10.4028/www.scientific.net/msf.880.132

Google Scholar

[25] Y. Duan, M. Keefe, T. A. Bogetti, B. A. Cheeseman, Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric, Compos. Struct., 68 (2005) 331–337.

DOI: 10.1016/j.compstruct.2004.03.026

Google Scholar

[26] M. P. Rao, G. Nilakantan, M. Keefe, B. M. Powers, T. A. Bogetti, Global/Local Modeling of Ballistic Impact onto Woven Fabrics, J. Compos. Mater., 43 (2009) 445–467.

DOI: 10.1177/0021998308097684

Google Scholar