[1]
De Meireles, J.F. Análise dinâmica de estruturas por modelos de elementos finitos identificados experimentalmente. PhD Thesis, University of Minho, (2007).
Google Scholar
[2]
BIN, X., NAN, C., C. Huajun. An integrated method of multi-objective optimization for complex mechanical structure. Advances in Engineering Software 41 (2010), 277–285.
DOI: 10.1016/j.advengsoft.2009.07.004
Google Scholar
[3]
BrilL, E.D., Chang, S-Y, L.D. Hopkins. Modeling to generate alternatives: The HSJ approach and an illustration using a problem in land use planning. Manage Sci 28:221 (1982).
DOI: 10.1287/mnsc.28.3.221
Google Scholar
[4]
BRILL, E.D., FLACH, J.M., HOPKINS, L.D., S. Ranjithan, MGA: A decision support system for complex, incompletely defined problems. IEEE Trans Syst Man Cybern 20:745 (1990).
DOI: 10.1109/21.105076
Google Scholar
[5]
Baugh, J.W., caldwell, S.C., E.D. Brill. A mathematical programming approach for generating alternatives in discrete structural optimization. Eng Optim;28:1 (1997).
DOI: 10.1080/03052159708941125
Google Scholar
[6]
Zárate, B.A., J.M. Caicedo. Finite element model updating: Multiple alternatives. Elsevier, Engineering Structures 30 (2008), 3724-3730.
DOI: 10.1016/j.engstruct.2008.06.012
Google Scholar
[7]
Bakir, P.G., Reynders, E., G. DE Roeck. An improved finite element model updating method by the global optimization technique Coupled Local Minimizers. Computers and Structures 86 (2008),1339–1352.
DOI: 10.1016/j.compstruc.2007.08.009
Google Scholar
[8]
Kalanta, S., Atkociunas, J., A. Venskus. Discrete optimization problems of the steel bar structures. Engineering Structures 31 (2009), 1298-1304.
DOI: 10.1016/j.engstruct.2009.01.004
Google Scholar
[9]
Silva, H.M., J.F. DE Meireles. Determination of the Material/Geometry of the section most adequate for a static loaded beam subjected to a combination of bending and torsion. Materials Science Forum 730-732 (2013).
DOI: 10.4028/www.scientific.net/msf.730-732.507
Google Scholar
[10]
Silva, H.M. Determination of the Material/Geometry of the section most adequate for a static loaded beam subjected to a combination of bending and torsion. MSc Thesis, University of Minho, (2011).
DOI: 10.4028/www.scientific.net/msf.730-732.507
Google Scholar
[11]
Lee, J., Kim, S-M, Park, H-S, B-H Woo. Optimum design of cold-formed steel channel beams using micro Genetic Algorithm. Engineering Structures 27 (2005),17–24.
DOI: 10.1016/j.engstruct.2004.08.008
Google Scholar
[12]
LIU, H., Igusa, T., B.W. Schafer. Knowledge-based global optimization of cold-formed steel columns. Thin-Walled Structures 42 (2004), 785–801.
DOI: 10.1016/j.tws.2004.01.001
Google Scholar
[13]
Magnucka-Blandzi, E., K. Magnucki. Buckling and optimal design of cold-formed thin-walled beams: Review of selected problems. Thin-Walled Structures 49 (2011), 554–561.
DOI: 10.1016/j.tws.2010.09.011
Google Scholar
[14]
Leng, J., Guest, J.K., B.W Schafer. Shape optimization of cold-formed steel columns. Thin-Walled Structures 49 (2011), 1492-1503.
DOI: 10.1016/j.tws.2011.07.009
Google Scholar
[15]
Theofanous, M., Chan, T.M., L. Gardner. Structural response of stainless steel oval hollow section compression members. Engineering Structures 31 (2009), 922-934.
DOI: 10.1016/j.engstruct.2008.12.002
Google Scholar
[16]
Lagaros, N.D., Psarras, L.D., Papadrakakis, M., G. Panagiotou. Optimum de-sign of steel structures with web openings. Engineering Structures 30 (2008), 2528–2537.
DOI: 10.1016/j.engstruct.2008.02.002
Google Scholar
[17]
Tsavdaridis, K.D., C. Dmello. Optimisation of novel elliptically-based web opening shapes of perforated steel beams. Journal of Constructional Steel Research 76 (2012), 39–53.
DOI: 10.1016/j.jcsr.2012.03.026
Google Scholar
[18]
MCkinstray, R., Lim, J.B.P., Tanyimboh, T.T., Phan D.T., W. Sha. Optimal design of long-span steel portal frames using fabricated beams. Journal of Constructional Steel Research 104 (2015), 104–114.
DOI: 10.1016/j.jcsr.2014.10.010
Google Scholar
[19]
Tran, T., L-Y Li. Global optimization of cold-formed steel channel sections. Thin-Walled Structures 44 (2006), 399–406.
DOI: 10.1016/j.tws.2006.04.007
Google Scholar
[20]
Silva, H.M., J.F. DE Meireles. Feasibility of internally reinforced thin-walled beams for industrial applications. Applied Mechanics and Materials 775 (2015), 119-124, Trans Tech Publications, Switzerland.
DOI: 10.4028/www.scientific.net/amm.775.119
Google Scholar
[21]
Silva, H.M., J.F. DE Meireles. Numerical study on the mechanical behaviour of hollow-box beams subjected to static loadings. Mechanics and Mechanical Engineering, 21(4) (2017), 855-868.
Google Scholar
[22]
K. Schittkowski. NLQPL: A FORTRAN-Subroutine Solving Constrained. Nonlinear Programming Problems, Annals of Operations Research, 5 (1985), 485-500, in http://wwwmathworkscom.
DOI: 10.1007/bf02022087
Google Scholar
[23]
M.C. Biggs.Constrained Minimization Using Recursive Quadratic Pro-gramming, Towards Global Optimization. (LCW Dixon and GP Szergo, eds) North-Holland 341–349, in http://wwwmathworkscom, (1975).
Google Scholar
[24]
Han, S.P. A Globally Convergent Method for Nonlinear Programming. J Optimization Theory and Applications 22:297 (1977) in http://www.mathworks.com.
Google Scholar
[25]
Powell, M.J.D. The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations. Nonlinear Programming 3 (OL Mangasarian, RR Meyer and SM Robinson, eds), Academic Press, in http://www.mathworks.com, (1978a).
DOI: 10.1016/b978-0-12-468660-1.50007-4
Google Scholar
[26]
Powell, M.J.D. A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. Numerical Analysis, GA Watson ed, Lecture Notes in Mathematics, Springer Verlag, 630, in http://wwwmathworks.com, (1978b).
Google Scholar
[27]
Fletcher, R. Practical Methods of Optimization. John Wiley and Sons, in http://www.mathworks.com, (1987).
Google Scholar
[28]
Gill, P.E., Murray, W., M.H. Wright. Practical Optimization. London, Academic Press, in http://www.mathworks.com, (1981).
Google Scholar
[29]
Powell, M.J.D. Variable Metric Methods for Constrained Optimization. Mathematical Programming: The State of the Art, (A Bachem, M Grotschel and B Korte, eds) Springer Verlag, 288–311, in http://wwwmathworks.com, (1983).
DOI: 10.1007/978-3-642-68874-4_12
Google Scholar
[30]
Hock, W., K. A. Schittkowski. Comparative Performance Evaluation of 27 Nonlinear Programming Codes. Computing 30:335, in http://www.mathworks.com (1983).
DOI: 10.1007/bf02242139
Google Scholar
[31]
http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html. Accessed 11 March (2016).
Google Scholar
[32]
http://www.mathworks.com/help/optim/ug/fmincon.html. Accessed 11 March (2016).
Google Scholar
[33]
http://www.mathworks.com/help/optim/ug/optimization-theory-overview.html#bqa_jby). Accessed 11 March (2016).
Google Scholar
[34]
Silva, H.M., J.F. DE Meireles. Effective Mechanical Behavior of Sandwich Beams under Uncoupled Bending and Torsion Loadings. Applied Mechanics and Materials 590 (2014), 58-62, Trans Tech Publications, Switzerland.
DOI: 10.4028/www.scientific.net/amm.590.58
Google Scholar
[35]
Silva, H.M., J.F. DE Meireles. Effective Stiffness Behavior of Sandwich Beams under Uncoupled Bending and Torsion Loadings, 852 (2016b), 469-475.
DOI: 10.4028/www.scientific.net/amm.852.469
Google Scholar