Improvement of Hardness and Biodegradability of Natural Based Bioplastic - Effect of Starch Addition during Synthesis

Article Preview

Abstract:

Biodegradable plastic are renewable packaging technology that are bio-based made of starch. The use of starch as a manufacture of bioplastic has great potential due to in Indonesia has various biodiversity of starch-producing plants. The objective of this research was to determine effect of cassava starch addition to hardness, density, moisture absorption, and biodegradability of bioplastic. The methods is a synthesis of bioplastic using a casting procedure ie mixing cassava starch at various concentrations 2%, 3%, 4%, and 5% (b/v) into the glycerol. This was demonstrated of bioplastic hardness and density of 31.56; 46.78; 52.34; 67.99 Shore A and 1.164; 1.178; 1.184; 1.191 g/cm3. Revealed that complete decomposition could be achieved on the 12, 13, 14, and 15 days. It shows that the cassava starch addition can improve hardness, density, moisture, and accelerate the decomposition process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-74

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European bioplastics, Bioplastic facts and figures. Berlin, (2016).

Google Scholar

[2] Ezeoha S L and Ezenwanne J N, Production of biodegradable plastic packaging film from cassava starch,, IOSR J. Eng., vol. 3, no. 10, p.2250–3021, (2013).

DOI: 10.9790/3021-031051420

Google Scholar

[3] Reddy R. Laxmana, Reddy V Sanjeevani, and Gupta G Anusha, Study of bio-plastics as green & sustainable alternative to plastics,, Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 5, p.82–89, (2013).

Google Scholar

[4] Hermansyah Heri, Carissa Rena, Bestari Merisa, and Deni Priscilla, Food grade bioplastic based on corn starch with banana pseudostem fibre / bacterial cellulose hybrid filler,, Adv. Mater. Res., vol. 997, p.158–168, (2014).

DOI: 10.4028/www.scientific.net/amr.997.158

Google Scholar

[5] Jambeck Jenna R., Geyer Roland, Wilcox Chris, Siegler Theodore R., Perryman Miriam, Andrady Anthony , Narayan Ramani, and Law Kara Lavender, Plastic waste inputs from land into the ocean,, Science (80), vol. 347, no. 6223, p.768–770, (2015).

DOI: 10.1126/science.1260352

Google Scholar

[6] Central Bureau of Statistics Indonesia, Produksi sampah per hari,, (2016).

Google Scholar

[7] Wahyuningtiyas Nanang Eko and Suryanto Heru, Analysis of biodegradation of bioplastics made of cassava starch,, J. Mech. Eng. Sci. Technol., vol. 1, no. 1, p.41–54, (2017).

Google Scholar

[8] Suksankraisorn K., S. Patumsawa, Vallikul P., Fungtammasan B., and Accary A., Co-combustion of municipal solid waste and thai lignite in a fluidized bed,, Energy Convers. Manag., vol. 45, no. 6, p.947–962, (2004).

DOI: 10.1016/s0196-8904(03)00187-0

Google Scholar

[9] Avella Maurizio, De Vlieger Jan J., Errico Maria Emanuela, Fischer Sabine, Vacca Paolo, and Volpe Maria Grazia, Biodegradable starch/clay nanocomposite films for food packaging applications,, Food Chem., vol. 93, no. 3, p.467–474, (2005).

DOI: 10.1016/j.foodchem.2004.10.024

Google Scholar

[10] Mostafa N. A., Farag Awatef A., Abo-dief Hala M., and Tayeb Aghareed M., Production of biodegradable plastic from agricultural wastes,, Arab. J. Chem., p.4–11, (2014).

DOI: 10.1016/j.arabjc.2015.04.008

Google Scholar

[11] Averous Luc, Biodegradable multiphase systems based on plasticized starch: a review,, Macromol. Sci. Part C Polym. Rev., vol. 44, no. 3, p.231–274, (2004).

Google Scholar

[12] Gáspár M., Benko Zs, Dogossy G., Réczey K., and Czigány T., Reducing water absorption in compostable starch-based plastics,, Polym. Degrad. Stab., vol. 90, no. 3, p.563–569, (2005).

DOI: 10.1016/j.polymdegradstab.2005.03.012

Google Scholar

[13] Alves Vanessa Dias, Mali Suzana, Beléia Adelaide, and Grossmann Maria Victória E, Effect of glycerol and amylose enrichment on cassava starch film properties,, Food Eng., vol. 78, no. 3, p.941–946, (2007).

DOI: 10.1016/j.jfoodeng.2005.12.007

Google Scholar

[14] Wahyuningtiyas Nanang Eko, Suryanto Heru, Rudiyanto Eddy, Sukarni, and Puspitasari Poppy, Thermogravimetric and kinetic analysis of cassava starch based bioplastic,, J. Mech. Eng. Sci. Technol., vol. 1, no. 2, p.1–16, (2017).

DOI: 10.17977/um016v1i22017p069

Google Scholar

[15] Oladunmoye Olufunmilola O, Aworh Ogugua C, Maziya-Dixon Bussie, Erukainure Ochuko L, and Elemo Gloria N, Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends,, Food Sci. Nutr., vol. 2, no. 2, p.132–8, (2014).

DOI: 10.1002/fsn3.83

Google Scholar

[16] Alesiani Andrea, Bedford David, Cerquiglini Claudio, Claro Julie, Karumathy Grace, Lucarelli Lavinia, Mancini David, Marocco Emanuele, and Milo Marco., Food and Agriculture Organization of the United Nations. (2016).

Google Scholar

[17] Chevillard Anne, Angellier-Coussy Hélne, Cuq Bernard, Guillard Valérie, César Guy, Gontard Nathalie, and Gastaldi Emmanuelle, How the biodegradability of wheat gluten-based agromaterial can be modulated by adding nanoclays,, Polym. Degrad. Stab., vol. 96, no. 12, p.2088–2097, (2011).

DOI: 10.1016/j.polymdegradstab.2011.09.024

Google Scholar

[18] ASTM D 2240, "Standard test method for rubber property durometer hardness, United States: ASTM International, (2004).

Google Scholar

[19] ASTM D 729, "Standard test methods for density and specific gravity (relative density) of plastics by displacement, United States: ASTM International, (2004).

Google Scholar

[20] ASTM D 570, Standard test method for water absorption of plastics, United States: ASTM International, (2004).

Google Scholar

[21] Myllarine Paivi, Partanen Riitta, Seppälä Jukka, and Forssell Pirkko, Effect of glycerol on behaviour of amylose and amylopectin films,, Carbohydr. Polym., vol. 50, no. 4, p.355–361, (2002).

DOI: 10.1016/s0144-8617(02)00042-5

Google Scholar

[22] Lopez Oliva V., Castilo Luciana A., Garcia M. Alejandra, Villar Marcelo A., and E. Silvia, Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles,, Food Hydrocoll., vol. 43, p.18–24, (2015).

DOI: 10.1016/j.foodhyd.2014.04.021

Google Scholar

[23] Ashby Michael F., Materials Selection in Mechanical Design, Third Edit. (2005).

Google Scholar

[24] Bastioli Castia, Handbook of Biodegradable Polymers, vol. 128, no. 4. Rapra Technology Limited, (2005).

Google Scholar

[25] Li Jeng-Yune and Yeh An-I, Relationships between thermal, rheological characteristics and swelling power for various starches,, Food Eng., vol. 50, no. 3, p.141–148, (2001).

DOI: 10.1016/s0260-8774(00)00236-3

Google Scholar

[26] Anggraini Tuty, Ulfimarjan, Azima Fauzan, and Yenrina Rina, The effect of chitosan concentration on the characteristics of sago (Metroxylon sp) starch bioplastics,, J. Pharm. Biol. Chem. Sci., vol. 8, no. 1, p.1339–1351, (2017).

Google Scholar

[27] Das K., Ray D., Bandyopahyay N. R., Gupta A., Sengupta S., Sahoo S., Mohanty A., and Misra M., Preparation and characterization of cross-linked starch/poly(vinylalcohol) green films with low moisture absorption,, Ind. Eng. Chem. Res., vol. 49, no. 5, p.1520–5045, (2010).

DOI: 10.1021/ie901092n

Google Scholar

[28] Wahyuningtiyas Nanang Eko and Suryanto Heru, Effect of ultrasonic treatment on morphology and mechanical properties of bioplastic from cassava starch with nanoclay reinforcement,, J. Metastable Nanocrystalline Mater., vol. 29, p.35–41, (2017).

DOI: 10.4028/www.scientific.net/jmnm.29.35

Google Scholar

[29] Hemsri S, Thongpin C, Somkid P, Sae-arma S, and Paiykaew A, Improvement of toughness and water resistance of bioplastic based on wheat gluten using epoxidized natural rubber,, Mater. Sci. Eng., vol. 87, p.1–9, (2015).

DOI: 10.1088/1757-899x/87/1/012049

Google Scholar

[30] Obasi Henry Chinedu and Igwe Isaac O., Effects of native cassava starch and compatibilizer on biodegradable and tensile properties of polypropylene,, Am. J. Eng. Res., no. 2, p.96–104, (2014).

Google Scholar

[31] Guan Junjie and Hanna Milford A., Functional properties of extruded foam composites of starch acetate and corn cob fiber,, Ind. Crops Prod., vol. 19, no. 3, p.255–269, (2004).

DOI: 10.1016/j.indcrop.2003.10.007

Google Scholar

[32] Jones Alexander, Z. Mark, and Sharma Suraj, Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol,, Prog. Biomater., vol. 2, no. 1, p.12, (2013).

DOI: 10.1186/2194-0517-2-12

Google Scholar

[33] Souza Victor Gomes Lauriano and F. A. Luisa, Nanoparticles in food packaging: Biodegradability and potential migration to food-A review,, Food Packag. Shelf Life, vol. 8, p.63–70, (2016).

DOI: 10.1016/j.fpsl.2016.04.001

Google Scholar

[34] Lee Su Kyong, Seong Dong Gi, and Youn Jae Ryoun, Degradation and rheological properties of biodegradable nanocomposites prepared by melt intercalation method,, Fibers Polym., vol. 6, no. 4, p.289–296, (2005).

DOI: 10.1007/bf02875664

Google Scholar

[35] Obasi Henry Chinedu, Studies on biodegradability and mechanical properties of high density polyethylene / corncob flour based composites,, Int. J. Sci. Eng. Res., vol. 3, no. 8, p.1–14, (2012).

Google Scholar

[36] Kim Hee Soo, Yang Han Seung, and Kim Hyun Joong, Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites,, J. Appl. Polym. Sci., vol. 97, no. 4, p.1513–1521, (2005).

DOI: 10.1002/app.21905

Google Scholar

[37] Bikiaris D., Pavlidou E., Prinos J., Aburto J., Alric I., Borredon E., and Panayiotou C., Biodegradation of octanoated starch and its blends with LDPE,, Polym. Degrad. Stab., vol. 60, no. 2–3, p.437–447, (1998).

DOI: 10.1016/s0141-3910(97)00106-7

Google Scholar

[38] Massardier-Nageotte V., Pestre C., T. Cruard-Pradet, and Bayard R., Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization,, Polym. Degrad. Stab., vol. 91, no. 3, p.620–627, (2006).

DOI: 10.1016/j.polymdegradstab.2005.02.029

Google Scholar