Turn-on Fluorescence Hg2+ Chemosensing Based in a Rhodamine 6G Derivative and Different Sensing Immobilization Approaches

Article Preview

Abstract:

In this study, the advantages and disadvantages of different immobilization approaches, proposed for a luminescent Hg2+chemosensor based in a spirocyclic phenyl-thiosemicarbazide Rhodamine 6G derivative (FC1), are analysed, and a comparative study of the different immobilization protocols is performed. The results demonstrated that the chemosensor is able to detect Hg2+ at ng mL-1 trace levels, with a remarkable selectivity, allowing its determination in biological, toxicological and environmental samples. Methyl methacrylate (MMA) and hydroxyethylmethacrylate (HEMA) polymeric film, electrospinning generated polymeric microfibres, nylon membranes and Au nanoparticles were tested as immobilization materials. The utilization of gold nanoparticles (AuNPs) is the method with the lowest limit of detection (LOD = 0.15 ng mL-1), but the response time is too high for practical use (7 hours). Nylon membranes give a very low detection limit (0.4 ng mL-1) and a practical response time (4 min), being the method of choice for practical applications to determine Hg2+ in aquatic, biological and toxicological samples, at a sampling rate of about 15 samples per hour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-61

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

Ā© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Syversen, P. Kaur, The toxicology of mercury and its compounds. Journal of Trace Elements in Medicine and Biology. Society for Minerals and Trace Elements (GMS). 26 (2012) 215-226.

DOI: 10.1016/j.jtemb.2012.02.004

Google Scholar

[2] United States Environmental Protection Agency, National Primary Drinking Water Regulations MCL booklet. EPA 816-F-09-004 (2009).

Google Scholar

[3] Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption as amended by Regulations 1882/2003/EC and 596/2009/EC.

DOI: 10.1017/cbo9780511610851.055

Google Scholar

[4] M. J. Culzoni, A. Muñoz de la Peña, A. Machuca, H. C. Goicoechea, R. Babiano, Rhodamine and BODIPY chemodosimeters and chemosensors for the detection of Hg2+, based on fluorescence enhancement effects. Analytical Methods. 5 (2013) 30-49.

DOI: 10.1039/c2ay25769f

Google Scholar

[5] M. H. Lee, S. J. Lee, J. H. Jung, H. Lim, J. S. Kim, Luminophore-immobilized mesoporous silica for selective Hg2+ sensing. Tetrahedron. 63 (2007) 12087-12092.

DOI: 10.1016/j.tet.2007.08.113

Google Scholar

[6] J. Hu, C. Li, S. Liu, Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance. Langmuir. 26 (2010) 724-729.

DOI: 10.1021/la9024102

Google Scholar

[7] H. Liu, P. Yu, D. Du, B. Qiu, X. Chen, G. Chen, Rhodamine-based ratiometric fluorescence sensing for the detection of mercury (II) in aqueous solution. Talanta. 81 (2010) 433-437.

DOI: 10.1016/j.talanta.2009.12.020

Google Scholar

[8] H. N. Kim, W. X. Ren, J. S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 41 (2012) 3210-3244.

DOI: 10.1039/c1cs15245a

Google Scholar

[9] H. Zheng, X.-Q. Zhan, Q.-N. Bian, X.-J. Zhang, Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chemical Communications. 49 (2013) 429.

DOI: 10.1039/c2cc35997a

Google Scholar

[10] Y.-K. Yang, S.-K. Ko, I. Shin, J. Tae, Synthesis of a highly metal-selective rhodamine-based probe and its use for the in vivo monitoring of mercury. Nature Protocols. 2 (2007) 1740-1745.

DOI: 10.1038/nprot.2007.246

Google Scholar

[11] D. Bohoyo Gil, M. I. Rodríguez-Cáceres, M. C. Hurtado-Sánchez, A. Muñoz de la Peña, Fluorescent determination of Hg2+ in water and fish samples using a chemodosimeter based in a Rhodamine 6G derivative and a portable fiber-optic spectrofluorimeter. Applied Spectroscopy. 64 (2010).

DOI: 10.1366/000370210791211600

Google Scholar

[12] Y. K. Yang, K.-J. Yook, J. Tae, A Rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg in aqueous media. Journal of the American Chemical Society. 127 (2005) 16760-16761.

DOI: 10.1021/ja054855t

Google Scholar

[13] S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, In vivo monitoring of mercury ions using a Rhodamine-based molecular probe. Journal of the American Chemical Society. 128 (2006) 14150-14155.

DOI: 10.1021/ja065114a

Google Scholar

[14] Y.-K. Yang, S.-K. Ko, I. Shin, J. Tae, Fluorescent detection of methylmercury by desulfurization reaction of rhodamine hydrazide derivatives. Organic and Biomolecular Chemistry. 7 (2009) 4590-4593.

DOI: 10.1039/b915723a

Google Scholar

[15] V. A. Lozano, G. M. Escandar, M. C. Mahedero, A. Muñoz de la Peña, A novel nylon membrane-rhodamine 6G spirocyclic phenylthiosemicarbazide derivative system as a fluorimetric probe for mercury (II) ion. Analytical Methods. 4 (2012) 2002-(2008).

DOI: 10.1039/c2ay05850b

Google Scholar

[16] F. J. Orriach-Fernández, A. Medina-Castillo, J. F. Fernández-Sánchez, A. Muñoz de la Peña, A. Fernández-Gutiérrez, Hg2+-selective sensing film based on the incorporation of a rhodamine 6G derivative into a novel hydrophilic water-insoluble copolymer. Analytical Methods. 5 (2013).

DOI: 10.1039/c3ay40717a

Google Scholar

[17] F. J. Orriach-Fernández, A. L. Medina-Castillo, J. E. Diaz-Gómez, A. Muñoz de la Peña, J. F. Fernández-Sánchez, A. Fernández Gutiérrez, A sensing microfibre mat produced by electrospinning for the turn-on luminescence determination of Hg2+ in water samples. Sensors and Actuators B: Chemical. 195 (2014).

DOI: 10.1016/j.snb.2014.01.010

Google Scholar

[18] R. Brasca, M. C. Onaindia, H. C. Goicoechea, A. Muñoz de la Peña, M. J. Culzoni, Highly selective and ultrasensitive turn-on luminescence chemosensor for mercury (II) determination based on the Rhodamine 6G derivative FC1 and Au nanoparticles. Sensors. 16 (2016).

DOI: 10.3390/s16101652

Google Scholar