Development of Foot Structure for Humanoid Robot Using Topology Optimization

Article Preview

Abstract:

This paper addresses the development of a foot structure for 22-Degree of Freedom (DoF) humanoid robot. The goal of this research is to reduce the weight of the foot and enable the robot to walk steadily. The proposed foot structure is based on the consideration of cases where the ground reaction forces are set up in different situations. The optimal foot structure is a combination of all the topology optimization results. Additionally, a gait pattern is generated by an approximated optimization method based on Response Surface Model (RSM) and Improved Self-Adaptive Differential Evolution Algorithm (ISADE). The result is validated through dynamic simulation by a commercially available software called Adams (MSC software, USA) with the humanoid robot named KHR-3HV belonging to Kondo Kagaku company.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-45

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Tanie, in: Humanoid Robot and its Application Possibility, Proc. of IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, Tokyo, Japan (2003), pp.213-214.

DOI: 10.1109/mfi-2003.2003.1232659

Google Scholar

[2] H. Kondo, Y. Ogura, H. Aikawa, A. Morishima, J. Shimizu, H. Lim, and A. Takanishi, in: Application of biped humanoid robot to simulate the motion of elderly and disable people, Gerontechnology (2008), vol. 7, p.143.

DOI: 10.4017/gt.2008.07.02.080.00

Google Scholar

[3] K. Muecke, and D. Hong, in: Constrained analytical trajectory filter for stabilizing humanoid robot motions, Intelligent Service Robotics (2011), vol. 4, pp.203-218.

DOI: 10.1007/s11370-011-0094-7

Google Scholar

[4] S. Kajita, K. Kaneko, M. Morisawa, S. Nakaoka, and H. Hirukawa, in: ZMP-based biped running enhanced by toe springs, Proc. of the IEEE Int. Conf. on Robotics and Automation, Roma, Italy (2007), pp.3963-3969.

DOI: 10.1109/robot.2007.364087

Google Scholar

[5] D. Torricelli, J. Gonzalez, M. Weckx, R. Jiménez-Fabián, B. Vanderborght, M. Sartori, S. Dosen, D. Farina, D. Lefeber, and J.L. Pons, in: Human-like compliant locomotion: State of the art of robotic implementations, Bioinspiration and Biomimetics (2016).

DOI: 10.1088/1748-3190/11/5/051002

Google Scholar

[6] E. Kouchaki, and M. J. Sadigh, in: Effect of toe-joint bending on biped gait performance, Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, Tianjin, China (2010), pp.697-702.

DOI: 10.1109/robio.2010.5723411

Google Scholar

[7] M. Sadedel, A. Yousefi-Koma, M. Khadiv, and M. Mahdavian, in: Adding low-cost passive toe joints to the feet structure of SURENA III humanoid robot, Robotica, pp.1-23.

DOI: 10.1017/s026357471600059x

Google Scholar

[8] K. Narioka, T. Homma, and K. Hosoda, in: Humanlike ankle-foot complex for a biped robot, Proc. of the 12th IEEE-RAS Int. Conf. on Humanoid Robots, Japan (2012), pp.15-20.

DOI: 10.1109/humanoids.2012.6651493

Google Scholar

[9] K. Nerakae, and H. Hasegawa, in: Big toe sizing design of small biped robot by using gait generation method, Applied Mechanics and Materials (2014), vol. 541-542, pp.1079-1086.

DOI: 10.4028/www.scientific.net/amm.541-542.1079

Google Scholar

[10] A. Hof in: The equations of motion for a standing human reveal three mechanisms for balance, J. of Biomechanics (2014), vol. 40, pp.451-457.

DOI: 10.1016/j.jbiomech.2005.12.016

Google Scholar

[11] K. Liu, and A. Tovar, in: An efficient 3D topology optimization code written in Matlab, Structural and Multidisciplinary Optimization (2014), vol. 50, pp.1175-1196.

DOI: 10.1007/s00158-014-1107-x

Google Scholar

[12] S. M. Bruijn, O. G. Meijer, P. J. Beek, and J. H. van Dieën, in: The effects of arm swing on human gait stability, J. of Experimental Biology (2010), vol. 213, pp.3945-3952.

DOI: 10.1242/jeb.045112

Google Scholar

[13] M. Pijnappels, I. Kingma, D. Wezenberg, G. Reurink, and J. H. van Dieën, in: Armed against falls: the contribution of arm movements to balance recovery after tripping, Experimental Brain Research (2010), vol. 201, pp.689-699.

DOI: 10.1007/s00221-009-2088-7

Google Scholar

[14] D. S. Marigold, A. J. Bethune, and A. E. Patla, in: Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion, J. of Neurophysiology (2003), vol. 89, pp.1727-1737.

DOI: 10.1152/jn.00683.2002

Google Scholar

[15] H. Elftman, in: The function of arms in walking, Human Biology (2003), vol. 11, pp.529-535.

Google Scholar

[16] R. N. Hinrichs, and P. R. Cavanagh, in: Upper Extremity Function in Treadmill Walking, Annual meeting of the American College of Sports Medicine, Miami, FL (1981).

Google Scholar

[17] J. Park, in: Synthesis of natural arm swing motion in human bipedal walking, J. of Biomechanics (2008), vol. 41, pp.1417-1426.

DOI: 10.1016/j.jbiomech.2008.02.031

Google Scholar

[18] J. Perry, and J. M. Burnfield, in: Gait Analysis: Normal and Pathological Function, 2nd Ed. Slack Incorporated (2010), p.82.

Google Scholar

[19] M. W. Whittle, in: An Introduction to Gait Analysis, 4th Ed. Oxford (2007), p.59.

Google Scholar

[20] N. Ito, and H. Hasegawa, in: The Robust Design to Generate the Gait Pattern of a Small Biped Robot, Japan Society for Design Engineering (2010), vol. 45, no. 6, pp.48-55.

Google Scholar

[21] K. Nerakae, and H. Hasegawa, in: Simulation Based Design Optimization Framework for a Gait Pattern Generation of a Small Biped Robot with Tiptoe mechanism, Proc. of the 10th Int. Conf. on Modelling and Applied Simulation, Rome (2014), pp.295-302.

Google Scholar

[22] T. Bui, H. Pham, and H. Hasegawa, in: Improve self-adaptive control parameters in differential evolution for solving constrained engineering optimization problems, J. of Computational Science and Technology (2013), vol. 7, no. 1, pp.59-74.

DOI: 10.1299/jcst.7.59

Google Scholar

[23] M. S. Orendurff, A. D. Segal, J. S. Berge, K. C. Flick, D. Spanier, and G. K. Klute, in: The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path, Gait and Posture (2006), vol. 23, pp.106-111.

DOI: 10.1016/j.gaitpost.2004.12.008

Google Scholar