[1]
R. Roback and B.V. Johnson Mass and momentum turbulent transport experiments with confined swirling coaxial jets,, NASA CR-168252, (1983).
DOI: 10.2514/6.1986-1665
Google Scholar
[2]
T. Parra, V. Vuorinen, R. Perez, R. Szasz and F. Castro Aerodynamic characterization of isothermal swirling flows in combustors,. International Journal of Energy and Environmental Engineering 5:85. (2014).
DOI: 10.1007/s40095-014-0085-5
Google Scholar
[3]
T. Parra, V. Vuorinen, R. Pérez, J.P. Keskinen, A. Wehrfritz, V. Mendoza, F. Castro Aerodynamic characterization of isothermal swirling flows in combustors, 5th International Congress on Energy and Environment Engineering and Management, (2013).
Google Scholar
[4]
T. Parra, R. Pérez, V. Mendoza, F. Castro Efficient fuel consume and minimum emission of swirling burners, Water Waste and Energy Management. (2014).
Google Scholar
[5]
D.G. Nicol A Chemical and Numerical Study of NOx and Pollutant Formation in Low-Emissions Combustion, Ph.D. Dissertation, University of Washington. (1995).
Google Scholar
[6]
P.L. Therkelsen, J. Enrique Portillo, D. Littlejohn, S.M. Martin, R.K. Cheng Self-induced unstable behaviors of CH4 and H2/CH4 flames in a model combustor with a low-swirl injector, Combustion and Flame 160: 307–321. (2013).
DOI: 10.1016/j.combustflame.2011.11.008
Google Scholar
[7]
D. Littlejohn, A. J. Majeski, S. Tonse, C. Castaldini and R. K. Cheng Laboratory investigation of an ultralow NOx premixed combustion concept for industrial boilers, Proceedings of the Combustion Institute, 29 p.1115–1121. (2002).
DOI: 10.1016/s1540-7489(02)80141-9
Google Scholar
[8]
L. Zhou, and A. C. Fernandez-Pello, R. Cheng Flame Spread in an Opposed Turbulent Flow, Combustion and Flame 81: 40-49. (1990).
DOI: 10.1016/0010-2180(90)90068-3
Google Scholar