Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory

Abstract:

Article Preview

This work consists of the analysis of the bending responses of porous Ceramic-Metal functionally graded (FG) rectangular plates are investigated according to high order shear deformation theory. The proposed theory contains four unknowns unlike the other theories which contains five unknowns, but it checks the boundary conditions without constraints on the upper and lower plate surfaces. Both the effect of shear strain and normal deformation are included in the present theory and so it does not need any shear correction factor. The equilibrium equations according to the porous FG plates Ceramic-Metal are derived. The solution of the problem is derived by using Navier’s technique. Numerical results have been reported, and compared with those available in the open literature for non-porous plates. Effects of the exponent graded and porosity factors are investigated.

Info:

Periodical:

Pages:

54-70

Citation:

M. Slimane, "Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory", Advanced Engineering Forum, Vol. 30, pp. 54-70, 2018

Online since:

November 2018

Authors:

Export:

Price:

$38.00

[1] Suresh S, Mortensen A. Fundamental of functionally graded materials. London: Maney; (1998).

[2] Zhu J, Lai Z, Yin Z, Jeon J, Lee S. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater Chem Phys 2001;68:130–5.

DOI: https://doi.org/10.1016/s0254-0584(00)00355-2

[3] Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M. Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 2012;36:182–90.

DOI: https://doi.org/10.1016/j.matdes.2011.10.049

[4] Rezaei AS, Saidi AR. Exact solution for free vibration of thick rectangular plates made of porous materials. Compos Struct 2015;134:1051–60.

DOI: https://doi.org/10.1016/j.compstruct.2015.08.125

[5] Behravan Rad A, Shariyat M. Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations. Compos Struct 2015;125:558–74.

DOI: https://doi.org/10.1016/j.compstruct.2015.02.049

[6] Rezaei AS, Saidi AR. Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates. Compos B 2016;91:361–70.

DOI: https://doi.org/10.1016/j.compositesb.2015.12.050

[7] Shafiei N, Mousavi A, Ghadiri M. On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int J Eng Sci 2016;106:42–56.

DOI: https://doi.org/10.1016/j.ijengsci.2016.05.007

[8] Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 2016;108–109:14–22.

DOI: https://doi.org/10.1016/j.ijmecsci.2016.01.025

[9] Chen D, Kitipornchai S, Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 2016;107:39–48.

DOI: https://doi.org/10.1016/j.tws.2016.05.025

[10] Ebrahimi F, Ghasemi F, Salari E. Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 2016;51:223–49.

DOI: https://doi.org/10.1007/s11012-015-0208-y

[11] Shafiei N, Mirjavadi SS, MohaselAfshari B, Rabby S, Kazemi M. Vibration of twodimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput Methods Appl Mech Eng 2017;322:615–32.

DOI: https://doi.org/10.1016/j.cma.2017.05.007

[12] Ebrahimi F, Jafari A, Barati MR. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-Walled Struct 2017;119:33–46.

DOI: https://doi.org/10.1016/j.tws.2017.04.002

[13] Rezaei AS, Saidi AR, Abrishamdari M, Pour Mohammadi MH. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach. Thin-Walled Struct 2017;120:366–77.

DOI: https://doi.org/10.1016/j.tws.2017.08.003

[14] Rezaei AS, Saidi AR. On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porous plates. Eur J Mech A Solids 2017;63:99–109.

DOI: https://doi.org/10.1016/j.euromechsol.2016.12.006

[15] Lhoucine B, Khalid E, Rhali B. Thermal behavior analysis at large free vibration amplitudes of thin annular FGM plates with porosities. Proc Eng 2017;199:528–33.

DOI: https://doi.org/10.1016/j.proeng.2017.09.148

[16] Wang Y, Wu D. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp Sci Technol 2017;66:83–91.

DOI: https://doi.org/10.1016/j.ast.2017.03.003

[17] Ghadiri M, SafarPour H. Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J Therm Stresses 2017;40(1):55–71.

DOI: https://doi.org/10.1080/01495739.2016.1229145

[18] Al Rjoub YS, Hamad AG. Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE J Civ Eng 2017;21(3):792–806.

DOI: https://doi.org/10.1007/s12205-016-0149-6

[19] Ghorbanpour Arani A, Khani M, Khoddami Maraghi Z. Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory. J Vib Control 2017:1–16.

DOI: https://doi.org/10.1177/1077546317709388

[20] Barati MR, Shahverdi H, Zenkour AM. Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory. Mech Adv Mater Struct 2017;24(12):987–98.

DOI: https://doi.org/10.1080/15376494.2016.1196799

[21] Wu D, Liu A, Huang Y, Huang Y, Pi Y, Gao W. Dynamic analysis of functionally graded porous structures through finite element analysis. Eng Struct 2018;165:287–301.

DOI: https://doi.org/10.1016/j.engstruct.2018.03.023

[22] Arshid E, Khorshidvand AR. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct 2018;125:220–33.

DOI: https://doi.org/10.1016/j.tws.2018.01.007

[23] Chen D, Kitipornchai S, Yang J. Dynamic response and energy absorption of functionally graded porous structures. Mater Des 2018;140:473–87.

DOI: https://doi.org/10.1016/j.matdes.2017.12.019

[24] Barati MR. A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur J Mech A Solids 2018;67:215–30.

DOI: https://doi.org/10.1016/j.euromechsol.2017.09.001

[25] Li L, Tang H, Hu Y. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos Struct 2018;184:1177–88.

DOI: https://doi.org/10.1016/j.compstruct.2017.10.052

[26] Barati MR. Vibration analysis of porous FG nanoshells with even and uneven porositydistributions using nonlocal strain gradient elasticity. Acta Mech 2018;229:1183–96.

DOI: https://doi.org/10.1007/s00707-017-2032-z

[27] Ebrahimi F, Jafari A. A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities. Mech Adv Mater Struct 2018;25(3):212–24.

DOI: https://doi.org/10.1080/15376494.2016.1255820

[28] Barati MR, Shahverdi H. Nonlinear vibration of nonlocal four-variable graded plates with porosities implementing homotopy perturbation and Hamiltonian methods. Acta Mech 2018; 229:343–62.

DOI: https://doi.org/10.1007/s00707-017-1952-y

[29] Jabbari M, Mojahedin A, Haghi M. Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field. Thin-Walled Struct 2014; 85:50–6.

DOI: https://doi.org/10.1016/j.tws.2014.07.018

[30] Khorshidvand AR, Farzaneh Joubaneh E, Jabbari M, Eslami MR. Buckling analysis of a porous circular plate with piezoelectric sensor–actuator layers under uniform radial compression. Acta Mech 2014;225:179–93.

DOI: https://doi.org/10.1007/s00707-013-0959-2

[31] Mojahedin A, Farzaneh Joubaneh E, Jabbari M. Thermal and mechanical stability of a circular porous plate with piezoelectric actuators. Acta Mech 2014;225:3437–52.

DOI: https://doi.org/10.1007/s00707-014-1153-x

[32] Jabbari M, Hashemitaheri M, Mojahedin A, Eslami MR. Thermal buckling analysisof functionally graded thin circular plate made of saturated porous materials. J Therm Stresses 2014;37:202–20.

DOI: https://doi.org/10.1080/01495739.2013.839768

[33] Farzaneh Joubaneh E, Mojahedin A, Khorshidvand AR, Jabbari M. Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load. J Sandwich Struct Mater 2015;17(1):3–25.

DOI: https://doi.org/10.1177/1099636214554172

[34] Barati MR, Sadr MH, Zenkour AM. Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int J Mech Sci 2016;117:309–20.

DOI: https://doi.org/10.1016/j.ijmecsci.2016.09.012

[35] Mojahedin A, Jabbari M, Khorshidvand AR, Eslami MR. Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory. Thin-Walled Struct 2016;99:83–90.

DOI: https://doi.org/10.1016/j.tws.2015.11.008

[36] Feyzi MR, Khorshidvand AR. Axisymmetric post-buckling behavior of saturated porous circular plates. Thin-Walled Struct 2017;112:149–58.

DOI: https://doi.org/10.1016/j.tws.2016.11.026

[37] Rezaei AS, Saidi AR. Buckling response of moderately thick fluid-infiltrated porous annular sector plates. Acta Mech 2017;228:3929–45.

DOI: https://doi.org/10.1007/s00707-017-1908-2

[38] Cong PH, Chien TM, Khoa ND, Duc ND. Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT. Aerosp Sci Technol 2018;77:419–28.

DOI: https://doi.org/10.1016/j.ast.2018.03.020

[39] Shojaeefard MH, Googarchin HS, Ghadiri M, Mahinzare M. Micro temperaturedependent FG porous plate: free vibration and thermal buckling analysis usi modified couple stress theory with CPT and FSDT. Appl Math Model 2017;50:633–55.

DOI: https://doi.org/10.1016/j.apm.2017.06.022

[40] Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 2017;142:235–45.

DOI: https://doi.org/10.1016/j.compscitech.2017.02.008

[41] Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 2017;116:656–65.

DOI: https://doi.org/10.1016/j.matdes.2016.12.061

[42] Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct 2018;193:281–94.

DOI: https://doi.org/10.1016/j.compstruct.2018.03.090

[43] Behravan Rad A. Static analysis of non-uniform 2D functionally graded auxeticporous circular plates interacting with the gradient elastic foundations involving friction force. Aerosp Sci Technol 2018;76:315–39.

DOI: https://doi.org/10.1016/j.ast.2018.01.036

[44] Zhang, J.W., Shen, H.S.: Postbuckling of orthotropic rectangular plates in biaxial compression. J. Eng. Mech. (ASCE) 117, 1158–1170 (1991).

DOI: https://doi.org/10.1061/(asce)0733-9399(1991)117:5(1158)

[45] Zhang, J.: Investigation to the buckling and postbuckling behavior of shear-flexible plates of composite construction. Acta Mech. Sin. 26, 176–182 (in Chinese) (1994).

[46] Shen, H.: Buckling and postbuckling of moderately thick plates. Appl. Math. Mech. 11, 367–376 (in Chinese) (1990).

DOI: https://doi.org/10.1007/bf02015120

[47] Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12, 69–77 (1945).

[48] Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Trans. ASME J. Appl.Mech. 18, 31–38 (1951).

[49] Librescu, L.: On the theory of anisotropic elastic shells and plates. Int. J. Solids Struct. 3, 53–68 (1967).

[50] Levinson, M.:An accurate simple theory of the static and dynamics of elastic plates. Mech. Res. Commun. 7, 343–350 (1980).

[51] Bhimaraddi, A., Stevens, L.K.: A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates. Trans. ASME J. Appl. Mech. 51, 195–198 (1984).

DOI: https://doi.org/10.1115/1.3167569

[52] Reddy, J.N. Asimple higher-order theory for laminated composite plates. Trans. ASME J. Appl. Mech. 51, 745–752 (1984).

DOI: https://doi.org/10.1115/1.3167719

[53] Ren, J.G.: A new theory of laminated plate. Compos. Sci. Technol. 26, 225–239 (1986).

[54] Kant, T., Pandya, B.N.: A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates. Compos. Struct. 9, 215–264 (1988).

DOI: https://doi.org/10.1016/0263-8223(88)90015-3

[55] Mohan, P.R., Naganarayana, B.P., Prathap, G.: Consistent and variationall correct finite elements for higher-order laminated plate theory. Compos. Struct. 29, 445–456 (1994).

DOI: https://doi.org/10.1016/0263-8223(94)90113-9

[56] Noor, A.K., Burton, W.S.: Assessment of shear deformation theories for multilayered composite plates. Appl. Mech. Rev. 42, 1–13 (1989).

DOI: https://doi.org/10.1115/1.3152418

[57] Reddy, J.N.: A review of refined theories of laminated composite plates. Shock Vib. Dig. 22, 3–17 (1990).

[58] Reddy, J.N.: An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Compos. Struct. 25, 21–35 (1993).

DOI: https://doi.org/10.1016/0263-8223(93)90147-i

[59] Mallikarjuna, M., Kant, T.: A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches. Compos. Struct. 23, 293–312 (1993).

DOI: https://doi.org/10.1016/0263-8223(93)90230-n

[60] Dahsin, L., Xiaoyu, L.: An overall view of laminate theories based on displacement hypothesis. J. Compos. Mater. 30, 1539–1561 (1996).

DOI: https://doi.org/10.1177/002199839603001402

[61] Kim, S.E., Thai H.T., Lee, J.:Atwo variable refined plate theory for laminated composite plates. Compos. Struct. 89, 197–205 (2009).

DOI: https://doi.org/10.1016/j.compstruct.2008.07.017

[62] Praveen G.N., Reddy, J.N. Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998).

DOI: https://doi.org/10.1016/s0020-7683(97)00253-9

[63] Najafizadeh, M.M., Eslami, M.R.: Buckling analysis of circular plates of functionally graded materials under uniform radial compression.Int. J. Mech. Sci. 44, 2479–2493 (2002).

DOI: https://doi.org/10.1016/s0020-7403(02)00186-8

[64] Merdaci S, Tounsi A, Houari MSA, Mechab I, Hebali H, Benyoucef S. Two new refined shear displacement models for functionally graded sandwich plates. Arch Appl Mech 2011;81:1507e22.

DOI: https://doi.org/10.1007/s00419-010-0497-5

[65] M. Touratier. An efficient standard plate theory. Engng Sci, vol. 29, no 8, pages 901-916, (1991).

[66] A. M. Zenkour., Kafr El-Sheikh, Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory, Acta Mechanica; 171 (3-4):171–187 (2004).

DOI: https://doi.org/10.1007/s00707-004-0145-7

[67] M. Karama., K.S. Afaq., S. Mistou, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Structures; 40 (6): 1525-1546, (2003).

DOI: https://doi.org/10.1016/s0020-7683(02)00647-9

[68] Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–77 (1945).

[69] Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18,31–38 (1951).

DOI: https://doi.org/10.1007/978-1-4613-8865-4_29

[70] Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944).

[71] Reddy. J.N., Wang. C.M., Lee. K.H. Relationships between bending solutions of classical and shear deformation beam theories. International Journal of Solids and Structures 34 (26), 3373–338, (1997).

DOI: https://doi.org/10.1016/s0020-7683(96)00211-9

[72] S.P. Timoshenko et J.M. Gere. Mechanics of Materials. New York: D.Van Nostrand Company, (1972).

[73] Reddy, J.N., Wang, C.M.: An overview of the relationships between solutions of the classical and shear deformation plate theories. Compos. Sci. Technol. 60, 2327–2335 (2000).

DOI: https://doi.org/10.1016/s0266-3538(00)00028-2