[1]
Suresh S, Mortensen A. Fundamental of functionally graded materials. London: Maney; (1998).
Google Scholar
[2]
Zhu J, Lai Z, Yin Z, Jeon J, Lee S. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater Chem Phys 2001;68:130–5.
DOI: 10.1016/s0254-0584(00)00355-2
Google Scholar
[3]
Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M. Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 2012;36:182–90.
DOI: 10.1016/j.matdes.2011.10.049
Google Scholar
[4]
Rezaei AS, Saidi AR. Exact solution for free vibration of thick rectangular plates made of porous materials. Compos Struct 2015;134:1051–60.
DOI: 10.1016/j.compstruct.2015.08.125
Google Scholar
[5]
Behravan Rad A, Shariyat M. Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations. Compos Struct 2015;125:558–74.
DOI: 10.1016/j.compstruct.2015.02.049
Google Scholar
[6]
Rezaei AS, Saidi AR. Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates. Compos B 2016;91:361–70.
DOI: 10.1016/j.compositesb.2015.12.050
Google Scholar
[7]
Shafiei N, Mousavi A, Ghadiri M. On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int J Eng Sci 2016;106:42–56.
DOI: 10.1016/j.ijengsci.2016.05.007
Google Scholar
[8]
Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 2016;108–109:14–22.
DOI: 10.1016/j.ijmecsci.2016.01.025
Google Scholar
[9]
Chen D, Kitipornchai S, Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 2016;107:39–48.
DOI: 10.1016/j.tws.2016.05.025
Google Scholar
[10]
Ebrahimi F, Ghasemi F, Salari E. Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 2016;51:223–49.
DOI: 10.1007/s11012-015-0208-y
Google Scholar
[11]
Shafiei N, Mirjavadi SS, MohaselAfshari B, Rabby S, Kazemi M. Vibration of twodimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput Methods Appl Mech Eng 2017;322:615–32.
DOI: 10.1016/j.cma.2017.05.007
Google Scholar
[12]
Ebrahimi F, Jafari A, Barati MR. Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-Walled Struct 2017;119:33–46.
DOI: 10.1016/j.tws.2017.04.002
Google Scholar
[13]
Rezaei AS, Saidi AR, Abrishamdari M, Pour Mohammadi MH. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach. Thin-Walled Struct 2017;120:366–77.
DOI: 10.1016/j.tws.2017.08.003
Google Scholar
[14]
Rezaei AS, Saidi AR. On the effect of coupled solid-fluid deformation on natural frequencies of fluid saturated porous plates. Eur J Mech A Solids 2017;63:99–109.
DOI: 10.1016/j.euromechsol.2016.12.006
Google Scholar
[15]
Lhoucine B, Khalid E, Rhali B. Thermal behavior analysis at large free vibration amplitudes of thin annular FGM plates with porosities. Proc Eng 2017;199:528–33.
DOI: 10.1016/j.proeng.2017.09.148
Google Scholar
[16]
Wang Y, Wu D. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp Sci Technol 2017;66:83–91.
DOI: 10.1016/j.ast.2017.03.003
Google Scholar
[17]
Ghadiri M, SafarPour H. Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J Therm Stresses 2017;40(1):55–71.
DOI: 10.1080/01495739.2016.1229145
Google Scholar
[18]
Al Rjoub YS, Hamad AG. Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE J Civ Eng 2017;21(3):792–806.
DOI: 10.1007/s12205-016-0149-6
Google Scholar
[19]
Ghorbanpour Arani A, Khani M, Khoddami Maraghi Z. Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory. J Vib Control 2017:1–16.
DOI: 10.1177/1077546317709388
Google Scholar
[20]
Barati MR, Shahverdi H, Zenkour AM. Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory. Mech Adv Mater Struct 2017;24(12):987–98.
DOI: 10.1080/15376494.2016.1196799
Google Scholar
[21]
Wu D, Liu A, Huang Y, Huang Y, Pi Y, Gao W. Dynamic analysis of functionally graded porous structures through finite element analysis. Eng Struct 2018;165:287–301.
DOI: 10.1016/j.engstruct.2018.03.023
Google Scholar
[22]
Arshid E, Khorshidvand AR. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct 2018;125:220–33.
DOI: 10.1016/j.tws.2018.01.007
Google Scholar
[23]
Chen D, Kitipornchai S, Yang J. Dynamic response and energy absorption of functionally graded porous structures. Mater Des 2018;140:473–87.
DOI: 10.1016/j.matdes.2017.12.019
Google Scholar
[24]
Barati MR. A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur J Mech A Solids 2018;67:215–30.
DOI: 10.1016/j.euromechsol.2017.09.001
Google Scholar
[25]
Li L, Tang H, Hu Y. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos Struct 2018;184:1177–88.
DOI: 10.1016/j.compstruct.2017.10.052
Google Scholar
[26]
Barati MR. Vibration analysis of porous FG nanoshells with even and uneven porositydistributions using nonlocal strain gradient elasticity. Acta Mech 2018;229:1183–96.
DOI: 10.1007/s00707-017-2032-z
Google Scholar
[27]
Ebrahimi F, Jafari A. A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities. Mech Adv Mater Struct 2018;25(3):212–24.
DOI: 10.1080/15376494.2016.1255820
Google Scholar
[28]
Barati MR, Shahverdi H. Nonlinear vibration of nonlocal four-variable graded plates with porosities implementing homotopy perturbation and Hamiltonian methods. Acta Mech 2018; 229:343–62.
DOI: 10.1007/s00707-017-1952-y
Google Scholar
[29]
Jabbari M, Mojahedin A, Haghi M. Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field. Thin-Walled Struct 2014; 85:50–6.
DOI: 10.1016/j.tws.2014.07.018
Google Scholar
[30]
Khorshidvand AR, Farzaneh Joubaneh E, Jabbari M, Eslami MR. Buckling analysis of a porous circular plate with piezoelectric sensor–actuator layers under uniform radial compression. Acta Mech 2014;225:179–93.
DOI: 10.1007/s00707-013-0959-2
Google Scholar
[31]
Mojahedin A, Farzaneh Joubaneh E, Jabbari M. Thermal and mechanical stability of a circular porous plate with piezoelectric actuators. Acta Mech 2014;225:3437–52.
DOI: 10.1007/s00707-014-1153-x
Google Scholar
[32]
Jabbari M, Hashemitaheri M, Mojahedin A, Eslami MR. Thermal buckling analysisof functionally graded thin circular plate made of saturated porous materials. J Therm Stresses 2014;37:202–20.
DOI: 10.1080/01495739.2013.839768
Google Scholar
[33]
Farzaneh Joubaneh E, Mojahedin A, Khorshidvand AR, Jabbari M. Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load. J Sandwich Struct Mater 2015;17(1):3–25.
DOI: 10.1177/1099636214554172
Google Scholar
[34]
Barati MR, Sadr MH, Zenkour AM. Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int J Mech Sci 2016;117:309–20.
DOI: 10.1016/j.ijmecsci.2016.09.012
Google Scholar
[35]
Mojahedin A, Jabbari M, Khorshidvand AR, Eslami MR. Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory. Thin-Walled Struct 2016;99:83–90.
DOI: 10.1016/j.tws.2015.11.008
Google Scholar
[36]
Feyzi MR, Khorshidvand AR. Axisymmetric post-buckling behavior of saturated porous circular plates. Thin-Walled Struct 2017;112:149–58.
DOI: 10.1016/j.tws.2016.11.026
Google Scholar
[37]
Rezaei AS, Saidi AR. Buckling response of moderately thick fluid-infiltrated porous annular sector plates. Acta Mech 2017;228:3929–45.
DOI: 10.1007/s00707-017-1908-2
Google Scholar
[38]
Cong PH, Chien TM, Khoa ND, Duc ND. Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT. Aerosp Sci Technol 2018;77:419–28.
DOI: 10.1016/j.ast.2018.03.020
Google Scholar
[39]
Shojaeefard MH, Googarchin HS, Ghadiri M, Mahinzare M. Micro temperaturedependent FG porous plate: free vibration and thermal buckling analysis usi modified couple stress theory with CPT and FSDT. Appl Math Model 2017;50:633–55.
DOI: 10.1016/j.apm.2017.06.022
Google Scholar
[40]
Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 2017;142:235–45.
DOI: 10.1016/j.compscitech.2017.02.008
Google Scholar
[41]
Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 2017;116:656–65.
DOI: 10.1016/j.matdes.2016.12.061
Google Scholar
[42]
Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct 2018;193:281–94.
DOI: 10.1016/j.compstruct.2018.03.090
Google Scholar
[43]
Behravan Rad A. Static analysis of non-uniform 2D functionally graded auxeticporous circular plates interacting with the gradient elastic foundations involving friction force. Aerosp Sci Technol 2018;76:315–39.
DOI: 10.1016/j.ast.2018.01.036
Google Scholar
[44]
Zhang, J.W., Shen, H.S.: Postbuckling of orthotropic rectangular plates in biaxial compression. J. Eng. Mech. (ASCE) 117, 1158–1170 (1991).
DOI: 10.1061/(asce)0733-9399(1991)117:5(1158)
Google Scholar
[45]
Zhang, J.: Investigation to the buckling and postbuckling behavior of shear-flexible plates of composite construction. Acta Mech. Sin. 26, 176–182 (in Chinese) (1994).
Google Scholar
[46]
Shen, H.: Buckling and postbuckling of moderately thick plates. Appl. Math. Mech. 11, 367–376 (in Chinese) (1990).
DOI: 10.1007/bf02015120
Google Scholar
[47]
Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12, 69–77 (1945).
Google Scholar
[48]
Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Trans. ASME J. Appl.Mech. 18, 31–38 (1951).
DOI: 10.1115/1.4010217
Google Scholar
[49]
Librescu, L.: On the theory of anisotropic elastic shells and plates. Int. J. Solids Struct. 3, 53–68 (1967).
Google Scholar
[50]
Levinson, M.:An accurate simple theory of the static and dynamics of elastic plates. Mech. Res. Commun. 7, 343–350 (1980).
Google Scholar
[51]
Bhimaraddi, A., Stevens, L.K.: A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates. Trans. ASME J. Appl. Mech. 51, 195–198 (1984).
DOI: 10.1115/1.3167569
Google Scholar
[52]
Reddy, J.N. Asimple higher-order theory for laminated composite plates. Trans. ASME J. Appl. Mech. 51, 745–752 (1984).
Google Scholar
[53]
Ren, J.G.: A new theory of laminated plate. Compos. Sci. Technol. 26, 225–239 (1986).
Google Scholar
[54]
Kant, T., Pandya, B.N.: A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates. Compos. Struct. 9, 215–264 (1988).
DOI: 10.1016/0263-8223(88)90015-3
Google Scholar
[55]
Mohan, P.R., Naganarayana, B.P., Prathap, G.: Consistent and variationall correct finite elements for higher-order laminated plate theory. Compos. Struct. 29, 445–456 (1994).
DOI: 10.1016/0263-8223(94)90113-9
Google Scholar
[56]
Noor, A.K., Burton, W.S.: Assessment of shear deformation theories for multilayered composite plates. Appl. Mech. Rev. 42, 1–13 (1989).
DOI: 10.1115/1.3152418
Google Scholar
[57]
Reddy, J.N.: A review of refined theories of laminated composite plates. Shock Vib. Dig. 22, 3–17 (1990).
Google Scholar
[58]
Reddy, J.N.: An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Compos. Struct. 25, 21–35 (1993).
DOI: 10.1016/0263-8223(93)90147-i
Google Scholar
[59]
Mallikarjuna, M., Kant, T.: A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches. Compos. Struct. 23, 293–312 (1993).
DOI: 10.1016/0263-8223(93)90230-n
Google Scholar
[60]
Dahsin, L., Xiaoyu, L.: An overall view of laminate theories based on displacement hypothesis. J. Compos. Mater. 30, 1539–1561 (1996).
Google Scholar
[61]
Kim, S.E., Thai H.T., Lee, J.:Atwo variable refined plate theory for laminated composite plates. Compos. Struct. 89, 197–205 (2009).
DOI: 10.1016/j.compstruct.2008.07.017
Google Scholar
[62]
Praveen G.N., Reddy, J.N. Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998).
DOI: 10.1016/s0020-7683(97)00253-9
Google Scholar
[63]
Najafizadeh, M.M., Eslami, M.R.: Buckling analysis of circular plates of functionally graded materials under uniform radial compression.Int. J. Mech. Sci. 44, 2479–2493 (2002).
DOI: 10.1016/s0020-7403(02)00186-8
Google Scholar
[64]
Merdaci S, Tounsi A, Houari MSA, Mechab I, Hebali H, Benyoucef S. Two new refined shear displacement models for functionally graded sandwich plates. Arch Appl Mech 2011;81:1507e22.
DOI: 10.1007/s00419-010-0497-5
Google Scholar
[65]
M. Touratier. An efficient standard plate theory. Engng Sci, vol. 29, no 8, pages 901-916, (1991).
Google Scholar
[66]
A. M. Zenkour., Kafr El-Sheikh, Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory, Acta Mechanica; 171 (3-4):171–187 (2004).
DOI: 10.1007/s00707-004-0145-7
Google Scholar
[67]
M. Karama., K.S. Afaq., S. Mistou, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Structures; 40 (6): 1525-1546, (2003).
DOI: 10.1016/s0020-7683(02)00647-9
Google Scholar
[68]
Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–77 (1945).
Google Scholar
[69]
Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18,31–38 (1951).
DOI: 10.1115/1.4010217
Google Scholar
[70]
Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944).
Google Scholar
[71]
Reddy. J.N., Wang. C.M., Lee. K.H. Relationships between bending solutions of classical and shear deformation beam theories. International Journal of Solids and Structures 34 (26), 3373–338, (1997).
DOI: 10.1016/s0020-7683(96)00211-9
Google Scholar
[72]
S.P. Timoshenko et J.M. Gere. Mechanics of Materials. New York: D.Van Nostrand Company, (1972).
Google Scholar
[73]
Reddy, J.N., Wang, C.M.: An overview of the relationships between solutions of the classical and shear deformation plate theories. Compos. Sci. Technol. 60, 2327–2335 (2000).
DOI: 10.1016/s0266-3538(00)00028-2
Google Scholar