Experimental Investigation during Micro-Milling of Hybrid Al6063 MMC Reinforced with SiC and ZrO2

Article Preview

Abstract:

The experimental investigation of process characteristics while performing micro-milling on hybrid aluminium metal matrix composite is discussed in this article. High Speed Steel micro end mill cutters are used for machining of micro-slots on Al6063 metal matrix composite reinforced with zirconia and silicon carbide. The tools are also treated cryogenically at -196°C using liquid nitrogen with a holding time of 24 hours. For this investigation, machining parameters like feed rate, cutting speed and depth of cut are considered as the process parameters. The effect of the process parameters on the material removal rate and surface roughness for hybrid metal matrix composite are analyzed. In addition, tools wear for untreated and cryo-treated single tempered tools are also investigated. The output responses i.e., material removal rate and surface roughness of cryo-treated tools exhibit better results than untreated tool due to increase in strength, hardness and wear resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Jing, Y. Tian, Y. Yuan, An experimental investigation of micro-milling brass considering run out by carbide micro-end mills, Proc. IMechE Part C: J Mechanical Engineering Science, (2017) 1-10.

DOI: 10.1177/0954406217742935

Google Scholar

[2] J.S. Johny, K. Venkatesan, P. Kuppan, R. Ramanujam, Hybrid aluminium metal matrix composite reinforced with SiC and TiB2, Procedia Engineering, 97(2014) 1018-1026.

DOI: 10.1016/j.proeng.2014.12.379

Google Scholar

[3] R. Pandiyarajan, P. Maran, S. Marimuthu, K.C. Ganesh, Mechanical and tribological behavior of the metal matrix composite AA6061/ZrO2/C, J. Mech. Sci. Technol., 31(10) (2017) 4711-4717.

DOI: 10.1007/s12206-017-0917-3

Google Scholar

[4] T. Rajmohan, K. Palanikumar, Experimental investigation and analysis of thrust force in drilling hybrid metal matrix composites by coated carbide drills, Mater. Manuf. Processes, 26 (2011) 961–968.

DOI: 10.1080/10426914.2010.523915

Google Scholar

[5] T. Rajmohan, K. Palanikumar, Optimization of machining parameters for surface roughness and burr height in drilling hybrid composites, Mater. Manuf. Processes, 27(3) (2012) 320-328.

DOI: 10.1080/10426914.2011.585491

Google Scholar

[6] D.F. Fratila, C. Caizar, Assessment of cooling effect and surface quality to face milling of AlMg3 using several cooling lubrication methods, Mater. Manuf. Processes, 18(4) (2011) 653-665.

DOI: 10.1080/10426914.2011.577864

Google Scholar

[7] A.A. Premnath, T. Alwarsamy, T. Rajmohan, Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites, Mater. Manuf. Processes, 27 (2012) 1035-1044.

DOI: 10.1080/10426914.2012.677911

Google Scholar

[8] S. Mittal, V. Kumar, H. Kumar, Experimental investigation and optimization of process parameters of Al/SiC MMCs finished by abrasive flow machining, Mater. Manuf. Processes, 30 (2015) 902-911.

DOI: 10.1080/10426914.2015.1004704

Google Scholar

[9] M. Sivaraj, N. Selvakumar, Experimental analysis of Al-TiC sintered nano composite on EDM process parameters using ANOVA, Mater. Manuf. Processes, 31(6) (2015) 802-812.

DOI: 10.1080/10426914.2015.1048471

Google Scholar

[10] N. Radhika, M.V. Priyanka, Investigation of adhesive wear behavior of zirconia reinforced aluminium metal matrix composite, J. Mech. Sci. Technol., 12(6) (2017) 1685-1696.

Google Scholar

[11] N. Swain, V. Venkatesh, P. Kumar, G. Srinivas, S. Ravishankar, H.C. Barshilia, An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills, CIRP Ann-Manuf. Technol., 16 (2017) 34-42.

DOI: 10.1016/j.cirpj.2016.07.005

Google Scholar

[12] J. Fleischer, M. Deuchert, C. Ruhs, C. Kühlewein, G. Halvadjiysky, C. Schmidt, Design and manufacturing of micro milling tools, Microsyst. Technol., 14 (2008) 1771-1775.

DOI: 10.1007/s00542-008-0652-x

Google Scholar

[13] X. Cheng, X. Yang, G. Zheng, Y. Huang, L. Li, Fabrication accuracy analysis of micromilling tools with complicated geometries by wire EDM, J. Mech. Sci. Technol., 28(6) (2014) 2329-2335.

DOI: 10.1007/s12206-014-0523-6

Google Scholar

[14] Q. Ren, M. Balazinski, K. Jemielniak, L. Baron, S. Achiche, Experimental and fuzzy modelling analysis on dynamic cutting force in micro milling, Soft Computing, 17 (2013) 1687-1697.

DOI: 10.1007/s00500-013-0983-0

Google Scholar

[15] R. Hoyle, Developments in micro and nano engineering and manufacturing, Plast. Rubber and Compos., 37(2) (2008) 50-56.

Google Scholar

[16] J.L. Liow, Mechanical micromachining: a sustainable micro-device manufacturing approach, J. Clean Prod., 17(7) (2009) 662-667.

DOI: 10.1016/j.jclepro.2008.11.012

Google Scholar

[17] E. Vazquez, D.T. Kemmoku, P.Y. Noritomi, J.V.L.D. Silva, J. Ciurana, Computer fluid dynamics analysis for efficient cooling and lubrication conditions in micromilling of Ti6Al4V alloy, Mater. Manuf. Processes, 29 (2014) 1494-1501.

DOI: 10.1080/10426914.2014.941864

Google Scholar

[18] C.J. Morgan, R.R. Vallance, E.R. Marsh, Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining, J. Micromech. Microeng., 14 (2004) 1687-1692.

DOI: 10.1088/0960-1317/14/12/013

Google Scholar

[19] F.Z. Fang, Y.C. Liu, On minimum exit-burr in micro cutting, J. Micromech. Microeng., 14 (2004) 984-988.

DOI: 10.1088/0960-1317/14/7/020

Google Scholar

[20] A.J. Mian, N. Driver, P.T. Mativenga, A comparative study of material phase effects on micro-machinability of multiphase materials, Int. J. Adv. Manuf. Tech., 50 (2010) 163-174.

DOI: 10.1007/s00170-009-2506-9

Google Scholar

[21] T. Zhang, Z. Liu, C. Xu, Influence of size effect on burr formation in micro cutting, Int. J. Adv. Manuf. Tech., 68 (2013) 1911-1917.

DOI: 10.1007/s00170-013-4801-8

Google Scholar

[22] M. Rahman, A. Senthil Kumar, J.R.S. Prakash, Micro milling of pure copper, J. Mater. Process Technol., 116 (2001) 39-43.

DOI: 10.1016/s0924-0136(01)00848-2

Google Scholar

[23] R. Rahnama, M. Sajjadi, S.S. Park, Chatter suppression in micro end milling with process damping, J. Mater. Process Technol., 209 (2009) 5766-5776.

DOI: 10.1016/j.jmatprotec.2009.06.009

Google Scholar

[24] S.S. Park, R. Rahnama, Robust chatter stability in micro-milling operations, CIRP Ann-Manuf. Technol., 59 (2010) 391-394.

DOI: 10.1016/j.cirp.2010.03.023

Google Scholar

[25] A. Marcon, S. Melkote, K. Kalaitzidou, D. DeBra, An experimental evaluation of graphite nanoplatelet based lubricant in micro-milling, CIRP Ann-Manuf. Technol., 59 (2010) 141-144.

DOI: 10.1016/j.cirp.2010.03.083

Google Scholar

[26] M.B.G. Jun, K. Bourne, R.E. DeVor, S.G. Kapoor, Estimation of effective error parameters in high-speed micro-end milling, Int. J. Mach. Tool Manu., 47 (2007) 1449-1454.

DOI: 10.1016/j.ijmachtools.2006.09.027

Google Scholar

[27] T. Schaller, L. Bohn, J. Mayer, K. Schubert, Microstructure grooves with a width of less than 50 mm cut with ground hard metal micro end mills, Precis. Eng., 23 (1999) 229-235.

DOI: 10.1016/s0141-6359(99)00011-2

Google Scholar

[28] T. Thepsonthi, T. Ozel, Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: Effects of cBN coating on tool wear, J. Mater. Process Technol., 213 (2013) 532-542.

DOI: 10.1016/j.jmatprotec.2012.11.003

Google Scholar

[29] E. Kuram, B. Ozcelik, Multi-objective optimization using Taguchi based Grey relational analysis for micro-milling of Al 7075 material with ball nose end mill, Measurement, 46 (2013) 1849-1864.

DOI: 10.1016/j.measurement.2013.02.002

Google Scholar

[30] E. Kuram, B. Ozcelik, Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and Inconel 718 materials using Taguchi method, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 231(2) (2017) 228-242.

DOI: 10.1177/0954405415572662

Google Scholar

[31] S. Soltani, R.A. Khosroshahi, R.T. Mousavian, Z.Y. Jiang, A.F. Boostani, D. Brabazon, Stir casting process for manufacture of Al–SiC composites, Rare Met., 36(7) (2017) 581-590.

DOI: 10.1007/s12598-015-0565-7

Google Scholar

[32] S. Rathee, S. Maheshwari, A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: A review, Mater. Manuf. Processes, 12 (2017) 1-23.

DOI: 10.1080/10426914.2017.1303162

Google Scholar