[1]
P.K. Johnson, Tungsten filaments – the first modern PM product, Int. J. Powder Metall 44 No.4 (2008) 43-48.
Google Scholar
[2]
F.Skaupy, Metallkeramik, 4th Ed., Verlag Chemie, Weinheim (1950).
Google Scholar
[3]
H.Silbereisen, Zur Geschichte der Sinterstahlfertigung in Deutschland, Powder Metall. Int. 16 No. 2 (1984) 65-69.
Google Scholar
[4]
B.Williams, World PM2016:Current status and future outlook for the global PM industry reviewed in Hanburg, Powder Metall. Review 5 No.4 (2016) 47-51.
Google Scholar
[5]
D.Whittaker, Innovation drives powder metallurgy structural components forward in the automotive industry, Powder Metall. Review 4 No.2 (2015) 35-53.
Google Scholar
[6]
K.J.A. Brookes, Hardmetals and other Hard Materials, 2nd Ed., Int. Carbide Data, East Barnet UK (1992).
Google Scholar
[7]
W.D. Schubert, E.Lassner, W.Boehlke, Cemented carbides – a success story, International Tungsten Industries Association, London (2010).
Google Scholar
[8]
H.Danninger, R.De Oro Calderon, C.Gierl-Mayer, Powder Metallurgy and Sintered Materials, in: Ullmann's Encyclopedia of Industrial Chemistry,, Wiley-VCH, Online (2017) 1 - 57.
DOI: 10.1002/14356007.a22_105.pub2
Google Scholar
[9]
M.Dlapka, A.Müller, Der Beitrag der Pulvermetallurgie zu aktuellen, treibstoffeffizienten Motorkonzepten, in: Pulvermetallurgie in Wissenschaft und Praxis Vol.33, H. Kolaska, H. Danninger, B. Kieback eds., Fachverband Pulvermetallurgie, Hagen (2017) 207-231.
DOI: 10.1002/maco.19920430710
Google Scholar
[10]
H.Danninger, C.Gierl, New alloying systems for ferrous powder metallurgy precision parts, Sci. Sintering 40 No.1 (2008) 33-46.
DOI: 10.2298/sos0801033d
Google Scholar
[11]
R.De Oro Calderon. C.Gierl-Mayer, H.Danninger, Application of thermal analysis techniques to study the oxidation/ reduction phenomena during sintering of steels containing oxygen sensitive alloying elements, Journal of Thermal Analysis and Calorimetry 127 No.1 (2017) 91-105,.
DOI: 10.1007/s10973-016-5508-5
Google Scholar
[12]
C.Gierl-Mayer, R.De Oro Calderon, H.Danninger, The role of oxygen transfer in sintering of low alloy steel powder compacts: A review of the internal getter, effect, JOM 68 No.3 (2016) 920 - 927,.
DOI: 10.1007/s11837-016-1819-z
Google Scholar
[13]
R.De Oro Calderon, E. Bernardo Quejido, M. Campos Gomez, C. Gierl-Mayer, H. Danninger, J.M. Torralba, Tailoring master alloys for liquid phase sintering: Effect of introducing oxidation-sensitive elements, Powder Metallurgy, 59 No.1 (2016), 31-40,.
DOI: 10.1080/00325899.2016.1148897
Google Scholar
[14]
R.De Oro Calderon, C.Gierl-Mayer, H.Danninger, The master alloy route: Introducing attractive alloying elements in Powder Metallurgy steels, Powder Metall. Review 5 (2016) No.3, 59-69.
DOI: 10.1080/00325899.2016.1269430
Google Scholar
[15]
G.Kotthoff, B.Leupold, V.Janzen, Potenziale von PM-Verzahnungen für den Einsatz in konventionellen und elektrifizierten Antrieben, in: Pulvermetallurgie in Wissenschaft und Praxis Vol.33, H. Kolaska, H. Danninger, B. Kieback eds., Fachverband Pulvermetallurgie, Hagen (2017) 185-206.
Google Scholar
[16]
A.Flodin, Automotive teardown: dismantling of three modern vehicles to discover current and potential uses for PM, Powder Metall. Review 6 ( 2017) No.2, 41-49.
Google Scholar
[17]
P.K. Jones, K.Buckley-Golder, D.Sarafinchan, Developing P/M geat tooth and bearing surfaces for high stress applications, Int. J. Powder Metallurgy 34 No.1 (1998) 26-33.
Google Scholar
[18]
W.D. Schubert, Feinst- und Ultrafeinkornhartmetalle - vom Pulver zum Werkzeug, Keramische Zeitschrift 2015 No.7, 365-376.
DOI: 10.1007/bf03400395
Google Scholar
[19]
J.L. Garcia, R. Pitonak, A. Köpf, R. Weissenbacher, S. Suarez, F. Miguel, A. Kostka, H. Pinto, F. Soldera, F. Mücklich, Design and characterization of novel wear resistant multilayer CVD coatings with improved adhesion between Al2O3 and Ti(C,N), Adv. Eng. Mater. 12 (2010) 929–934.
DOI: 10.1002/adem.201000130
Google Scholar
[20]
W.D. Schubert, M.Fugger, B.Wittmann, R.Useldinger, Aspects of sintering of cemented carbides with Fe-based binders, Int. J. Refr. Metals & Hard Mater. 49 (2015) 110-123.
DOI: 10.1016/j.ijrmhm.2014.07.028
Google Scholar
[21]
G.Leichtfried, Refractory Metals", in Landolt-Börnstein New Series VIII/2A2 "Refractory, Hard and Intermetallic Materials, Springer: Berlin-Heidelberg (2002) 1-23 Chapter 12.
DOI: 10.1007/10858641_2
Google Scholar
[22]
M.Haydn, K.Ortner, Th.Franco, N.H. Menzler, A.Venskutonis, L.S. Sigl, Development of metal-supported solid oxide fuel cells based on powder metallurgical manufacturing route, Powder Metall. 56 No.5 (2013) 382-387.
DOI: 10.1179/1743290113y.0000000075
Google Scholar
[23]
C.Burkhardt, O.Weber, B.Podmiljsak, J.Gonzalez-Gutierrez, C.Kukla, M.Degri, I.R. Harris, A. Walton, Tailored Metal Injection Moulding Of Isotropic NdFeB Hard Magnets Based On Recycled Powders With And Without Nd-Additions, Proc. EuroPM2017 Milan, EPMA, Shrewsbury UK (2017) paper no. 3684120.
Google Scholar
[24]
M.Dougan, An introduction to powder metallurgy soft magnetic components: Materials and applications, Powder Metall. Review 4 No.3 (2015) 41-50.
Google Scholar
[25]
A.Schoppa, P.Delarbre, Fertigungstechnische Herausforderungen bei weichmagnetischen Pulverwerkstoffen, in: Pulvermetallurgie in Wissenschaft und Praxis Vol. 29, H.Kolaska ed., Fachverband Pulvermetallurgie, Hagen (2013) 231-247.
Google Scholar
[26]
A.Schoppa, P.Delabre, E.Holzmann, M.Silg, Magnetic Properties of Soft Magnetic Powder Composites at Higher Frequencies in Comparison with Electrical Steels, in: Proc. IEEE EDPC Conf. Nuremberg (2013).
DOI: 10.1109/edpc.2013.6689717
Google Scholar
[27]
K.S. Narasimhan, High-performance permanent magnets: the influence of rare earths and the delelopment of alternative materials, Powder Metall. Review 6 No.4 (2017) 47-58.
Google Scholar
[28]
R.M. German, Markets, applications and financial aspects of global metal powder injection molding (MIM) technologies, Adv. Powder Metall. & Partic. Mater. Part 4, MPIF, Princeton NJ (2011) 119.
DOI: 10.1016/s0026-0657(12)70051-6
Google Scholar
[29]
P.K. Johnson, Annual MIM technology review: Metal injection molding trends – 2016, Int. J. Powder Metall 52 No.1 (2016) 5-7.
Google Scholar
[30]
J.F. Isaza, C.Aumund-Kopp, Additive manufacturing with metal powders: Design for manufacture evolves into design for function, Powder Metall. Review 3 No.2 (2014) 41-51.
Google Scholar
[31]
Anonymous, Metal AM in the automotive industry: new vehicle structures, series components for the luxury market and beyond, Metal Additive Manuf. 2 No.2 (2016) pp.63-75.
Google Scholar
[32]
D.Bhate, Honeywell: Driving AM application and supply chain development in the aerospace industry, Metal Additive Manuf. 3 No.3, 2017, pp.81-91.
Google Scholar
[33]
E.Hryha, R.Shvab, H.Gruber, A.Leicht, L.Nyborg, Surface Oxide State on Metal Powder and its Changes during Additive Manufacturing: an Overview, Proc. EuroPM2017 Milano, EPMA, Shrewsbury UK (2017), paper no. 3687558.
Google Scholar
[34]
D.Whittaker, Combining Metal AM and Hot Isostatic Pressing (HIP): Application and Process Innovation, Metal Additive Manuf. 3 No.4 (2017) pp.83-91.
Google Scholar