Numerical Analysis of Streamlines in Kaplan Turbine with Different Distributor Fins Design

Article Preview

Abstract:

With each passing day companies are looking more and more in the initial phase of the project, to understand the phenomena arising, so that in the execution of the project there are no failures, much less when the project is in operation. For this, the numerical simulation has been shown an increasingly efficient tool to assist the engineers and designers of machines and equipment. The Kaplan turbine design requires a high level of engineering expertise combined with a high level of knowledge in fluid mechanics, as poor design of a diffuser fin can lead to disordered turbulent flow which, when mixed with a high pressure drop, can cavitate into turbine blades. The aim of this study is to evaluate different types of diffuser fin profiles in the inlet at Kaplan turbines. For this, numerical computer simulation was used with the aid of the Ansys Fluent software, in which simulations of water flow in a steady state occurred. The software works with the finite volume method for the discretization of the Navier-Stokes equations. The simulations have proved to be efficient in capturing current lines and pointing out the best flow profile in a project, avoiding more complex turbine blade problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-54

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Deng, Z.; Carlson, T. J.; Ploskey, G. R.; Richmond, M. C.; Dauble, D. D. Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines. Ecological Modelling, 208(2), 165–176. (2007).

DOI: 10.1016/j.ecolmodel.2007.05.019

Google Scholar

[2] Zivkovic, S.; Cerce, L.; Kostic, J.; Majstorovic, V.; Kramar, D. Reverse Engineering of Turbine Blades Kaplan's type for Small Hydroelectric Power Station. 75 Procedia CIRP, 379–384. (2018).

DOI: 10.1016/j.procir.2018.04.037

Google Scholar

[3] Zhang, M.; Valentín, D.; Valero, C.; Egusquiza, M.; Egusquiza, E. Failure investigation of a Kaplan turbine blade. Engineering Failure Analysis. 27(1), 690–700. (2019).

DOI: 10.1016/j.engfailanal.2019.01.056

Google Scholar

[4] Lai, X.D.; Liang, Q.W.; Ye, D.X.; Chen, X.M.; Xia, M.M. Experimental investigation of flows inside draft tube of a high-head pump-turbine. Renewable Energy. (2018).

DOI: 10.1016/j.renene.2018.10.058

Google Scholar

[5] Luo, Y.; Wang, Z.; Zeng, J.; Lin, J. Fatigue of piston rod caused by unsteady, unbalanced, unsynchronized blade torques in a Kaplan turbine. Engineering Failure Analysis, 17(1), 192–199. (2010).

DOI: 10.1016/j.engfailanal.2009.06.003

Google Scholar

[6] Pacheco, V. F.; Miranda, D. A. Aerodynamic Analysis of High Energy Efficiency Vehicles by Computational Fluid Dynamics Simulation. Advanced Engineering Forum, v.32, 41–51. (2019).

DOI: 10.4028/www.scientific.net/aef.32.41

Google Scholar

[7] Božić, I.; Benišek, M. An improved formula for determination of secondary energy losses in the runner of Kaplan turbine. Renewable Energy. 94, 537–546. (2016).

DOI: 10.1016/j.renene.2016.03.093

Google Scholar

[8] Puolakka, O.; Keto-Tokoi, J.; Matusiak, J. Unsteady load on an oscillating Kaplan turbine runner. Journal of Fluids and Structures. 37, 22–33. (2013).

DOI: 10.1016/j.jfluidstructs.2012.12.002

Google Scholar

[9] Adhikari, R. C.; Wood, D. H. A new nozzle design methodology for high efficiency crossflow hydro turbines. Energy for Sustainable Development. 41, 139–148. (2017).

DOI: 10.1016/j.esd.2017.09.004

Google Scholar

[10] Gabl, R.; Innerhofer, D.; Achleitner, S.; Righetti, M.; Aufleger, M. Evaluation criteria for velocity distributions in front of bulb hydro turbines. Renewable Energy. 121, 745–756. (2018).

DOI: 10.1016/j.renene.2018.01.027

Google Scholar

[11] Soares, A. A. B.; Andrade, A. J. C.; Viana, D. M.; Ferreira, J. L. A. Previsão de vida à fadiga das pás de uma hidroturbina Kaplan. 16° Simpósio de Pós Graduação em Engenharia Mecânica da Universidade Federal de Uberlândia. Minas Gerais, (2016).

DOI: 10.36229/978-85-7042-207-1

Google Scholar

[12] Javadi, A.; Nilsson, H. Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations. International Journal of Heat and Fluid Flow. 63, 1–13. (2017).

DOI: 10.1016/j.ijheatfluidflow.2016.11.010

Google Scholar

[13] Kumar, D.; Bhingole, P. P. CFD Based Analysis of Combined Effect of Cavitation and Silt Erosion on Kaplan Turbine. Materials Today: Proceedings. 2(4-5), 2314–2322. (2015).

DOI: 10.1016/j.matpr.2015.07.276

Google Scholar

[14] Miranda, D.A. Influence of Mesh Geometry and Mesh Refinement on Mathematical Models of Thermoplastic Injection Simulation Tools. IOSR Journal of Mechanical and Civil Engineering. 15, 38-44. (2018).

Google Scholar

[15] Sacchelli, C.M.; Miranda, D.A.; Dreschler, M.F.; Nogueira, A.L. Simulação computacional da injeção de termoplásticos: comparação de ferramentas tipo CAE. Congresso Brasileiro de Engenharia de Fabricação. 1-12. (2017).

DOI: 10.26678/abcm.cobef2017.cof2017-1320

Google Scholar

[16] Jawahar, C. P.; Michael, P. A. A review on turbines for micro hydro power plant. Renewable and Sustainable Energy Reviews. 72, 882–887. (2017).

DOI: 10.1016/j.rser.2017.01.133

Google Scholar

[17] Martinez, J. J.; Deng, Z. D.; Titzler, P. S.; Duncan, J. P.; Lu, J.; Mueller, R. P.; Renholds, J. F. Hydraulic and biological characterization of a large Kaplan turbine. Renewable Energy. 131, 240–249. (2019).

DOI: 10.1016/j.renene.2018.07.034

Google Scholar