Modelling of the Strain Hardening Behaviour of Die-Cast Magnesium-Aluminium-Rare Earth Alloy

Article Preview

Abstract:

The tensile deformation behaviour of magnesium alloy AE44 (Mg-4Al-4RE) under strain rates ranging from 10-6 to 10-1 s-1 has been investigated. Present study shows that the deformation mode begins with the activation of elastic (Stage 1), followed by <a> basal slip and twinning (Stage 2), <a> prismatic slip (Stage 3) and finally to <c+a> pyramidal slip (Stage 4). The commencement of these deformation mechanisms results in four distinct stages of strain hardening in the stress-strain curve. In this work, the four stages of deformation behaviour are modelled, and an empirical equation is proposed to predict the entire stress-strain curve. Overall, the model predictions are in good agreement with the experimental data. This study on the decomposition of stress-strain curve into four stages provides insights into the contribution of individual deformation mechanism to the overall deformation behaviour and opens a new way to assess mechanical properties of die-cast magnesium alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

February 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.J. Esdaile, Magnesium casting applications in the automotive industry, SAE Technical Paper (2001) pp.2001-0415.

DOI: 10.4271/2001-01-0415

Google Scholar

[2] M. Avedesian, H. Baker, Magnesium and Magnesium Alloys—ASM Specialty Handbook, ASM International, Ohio, (1999).

Google Scholar

[3] S.M. Zhu, J.F. Nie, M. Gibson, M. Easton, P. Bakke, Microstructure and creep behavior of high-pressure die-cast magnesium alloy AE44, Metall. Mater.Trans. A 43 (2012) 4137-4144.

DOI: 10.1007/s11661-012-1247-9

Google Scholar

[4] A.A. Luo, Magnesium casting technology for structural applications, J. Magnesium and Alloys 1 (2013) 2-22.

Google Scholar

[5] J. Aragones, K. Goundan, S. Kolp, R. Osborne, L. Ouimet, W. Pinch, Development of the 2006 Corvette Z06 structural cast magnesium crossmember, SAE Technical Paper (2005) pp.2005-0340.

DOI: 10.4271/2005-01-0340

Google Scholar

[6] A. Kiełbus, Microstructure of AE44 magnesium alloy before and after hot-chamber die casting, J. Achiev. Mater. Manuf. Eng. 20 (2007) 459-462.

Google Scholar

[7] T. Rzychoń, A. Kiełbus, J. Cwajna, J. Mizera, Microstructural stability and creep properties of die casting Mg–4Al–4RE magnesium alloy, Mater. Charact. 60 (2009) 1107-1113.

DOI: 10.1016/j.matchar.2009.05.014

Google Scholar

[8] T. Rzychoń, A. Kiełbus, G. Dercz, Structural and quantitative analysis of die cast AE44 magnesium alloy, J. Achiev. Mater. Manuf. Eng. 22 (2007) 43-46.

Google Scholar

[9] G. Çam, Friction stir welded structural materials: beyond Al-alloys, Int. Mater. Rev. 56 (2011) 1-48.

DOI: 10.1179/095066010x12777205875750

Google Scholar

[10] A. Luo, T. Lee, J. Carter, Self-pierce riveting of magnesium to aluminum Alloys, SAE Int. J. Mater. Manuf. 4 (2011) 158-165.

DOI: 10.4271/2011-01-0074

Google Scholar

[11] K.V. Yang, C.H. Cáceres, A.V. Nagasekhar, M.A. Easton, Low-strain plasticity in a high pressure die cast Mg–Al alloy, Model. Simul. Mater. Sci. Eng. 20 (2012) p.024010.

DOI: 10.1088/0965-0393/20/2/024010

Google Scholar

[12] K.V. Yang, C.H. Cáceres, C.N. Tomé, The elasto-plastic transition in magnesium alloys, in: S.N. Mathaudhu, W.H. Sillekens, N.R. Neelameggham, N. Hort (Eds.), Magnesium Technology 2012, The Minerals, Metals & Materials Society, 2012 Mar 11-15, Orlando, Florida, 2012, pp.127-131.

DOI: 10.1002/9781118359228.ch24

Google Scholar

[13] C. Cáceres, P. Lukáč, Strain hardening behaviour and the Taylor factor of pure magnesium, Philos. Mag. 88 (2008) 977-989.

DOI: 10.1080/14786430801968611

Google Scholar

[14] H.Q. Ang, T.B. Abbott, S. Zhu, M.A. Easton, Anelasticity of die-cast magnesium-aluminium based alloys under different strain rates, Mater. Sci. Eng. A 707 (2017) 101-109.

DOI: 10.1016/j.msea.2017.09.012

Google Scholar

[15] C. Caceres, A. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A 462 (2007) 193-196.

Google Scholar

[16] H.Q. Ang, T.B. Abbott, S. Zhu, M.A. Easton, An analysis of the tensile deformation behavior of commercial die-cast magnesium-aluminum-based alloys, Metall. Mater. Trans. A 50 (2019) 3827-3841.

DOI: 10.1007/s11661-019-05282-1

Google Scholar

[17] H.Q. Ang, T.B. Abbott, S. Zhu, C. Gu, M.A. Easton, Proof stress measurement of die-cast magnesium alloys, Mater. Des 112 (2016) 402-409.

DOI: 10.1016/j.matdes.2016.09.088

Google Scholar

[18] P. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metall. Rev. 12 (1967) 169-194.

DOI: 10.1179/mtlr.1967.12.1.169

Google Scholar

[19] G.I. Taylor, Plastic strain in metals, Inst. Met. 62 (1938) 307-324.

Google Scholar

[20] S. Agnew, M. Yoo, C. Tome, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Mater. 49 (2001) 4277-4289.

DOI: 10.1016/s1359-6454(01)00297-x

Google Scholar

[21] S. Agnew, D. Brown, C. Tomé, Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction, Acta Mater. 54 (2006) 4841-4852.

DOI: 10.1016/j.actamat.2006.06.020

Google Scholar

[22] S. Agnew, R. Mulay, F. Polesak, C. Calhoun, J. Bhattacharyya, B. Clausen, In situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms, Acta Mater. 61 (2013) 3769-3780.

DOI: 10.1016/j.actamat.2013.03.010

Google Scholar

[23] S.R. Agnew, Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast. 21 (2005) 1161-1193.

DOI: 10.1016/j.ijplas.2004.05.018

Google Scholar

[24] F. Briffod, T. Shiraiwa, M. Enoki, Monotonic and cyclic anisotropies of an extruded Mg–Al–Ca–Mn alloy plate: Experiments and crystal plasticity studies, Mater. Sci. Eng. A 772 (2020) 138753.

DOI: 10.1016/j.msea.2019.138753

Google Scholar

[25] H. Wang, S.Y. Lee, H. Wang, W. Woo, E-W. Huang, J. Jain, K. An, On plastic anisotropy and deformation history-driven anelasticity of an extruded magnesium alloy, Scr. Mater. 176 (2020) 36-41.

DOI: 10.1016/j.scriptamat.2019.09.025

Google Scholar

[26] H. Wang, S.Y. Lee, E.-W. Huang, J. Jain, D. Li, Y. Peng, H.-S. Choi, P. Wu, Crystal plasticity modeling and neutron diffraction measurements of a magnesium AZ31B plate: Effects of plastic anisotropy and surrounding grains, J Mech. Phys. Solids 135 (2020) 103795.

DOI: 10.1016/j.jmps.2019.103795

Google Scholar

[27] A. Githens, S. Ganesan, Z. Chen, J. Allison, V. Sundararaghavan, S. Daly, Characterizing microscale deformation mechanisms and macroscopic tensile properties of a high strength magnesium rare-earth alloy: A combined experimental and crystal plasticity approach, Acta Mater. 186 (2019) 77-94.

DOI: 10.1016/j.actamat.2019.12.012

Google Scholar

[28] H.Q. Ang, S. Zhu, T.B. Abbott, D. Qiu, M.A. Easton, Strain-rate sensitivity of die-cast magnesium-aluminium based alloys, Mater. Sci. Eng. A 699 (2017) 239-246.

DOI: 10.1016/j.msea.2017.05.093

Google Scholar

[29] J.H. Hollomon, Tensile deformation, AIME Trans. 12 (1945) 1-22.

Google Scholar

[30] H. Fallahi, M. Tabarroki, C. Davies, Evolution of anelastic behaviour and twinning in cyclic loading of extruded magnesium alloy ZM21, Mater. Sci. Eng. A 770 (2020) 138520.

DOI: 10.1016/j.msea.2019.138520

Google Scholar

[31] D. Nagarajan, X. Ren, C. Cáceres, Anelastic behavior of Mg-Al and Mg-Zn solid solutions, Mater. Sci. Eng. A 696 (2017) 387-392.

DOI: 10.1016/j.msea.2017.04.069

Google Scholar

[32] Q. Ma, B. Li, A. Oppedal, W. Whittington, S. Horstemeyer, E. Marin, P. Wang, M. Horstemeyer, Strain rate dependence of twinning at 450° C and its effect on microstructure of an extruded magnesium alloy, Mater. Sci. Eng. A 559 (2013) 314-318.

DOI: 10.1016/j.msea.2012.08.104

Google Scholar

[33] M. Meyers, O. Vöhringer, V. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001) 4025-4039.

DOI: 10.1016/s1359-6454(01)00300-7

Google Scholar

[34] I. Ulacia, N. Dudamell, F. Gálvez, S. Yi, M. Pérez-Prado, I. Hurtado, Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates, Acta Mater. 5 (2010) 2988-2998.

DOI: 10.1016/j.actamat.2010.01.029

Google Scholar

[35] M. Barnett, A Taylor model based description of the proof stress of magnesium AZ31 during hot working, Metall. Mater. Trans. A 34 (2003) 1799-1806.

DOI: 10.1007/s11661-003-0146-5

Google Scholar

[36] C. Bettles, M. Barnett (Eds.), Advances in wrought magnesium alloys: Fundamentals of processing, properties and applications, Woodhead Publishing, Cambridge, (2012).

Google Scholar

[37] G.E. Dieter, Mechanical Metallurgy, SI Metric ed., McGraw-Hill Book Company, London, (1988).

Google Scholar

[38] U. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171-273.

DOI: 10.1016/s0079-6425(02)00003-8

Google Scholar

[39] D. Nagarajan, Anelasticity in cast Mg-Gd alloys, Mater. Sci. Eng. A 695 (2017) 14-19.

Google Scholar

[40] G. Mann, T. Sumitomo, C. Cáceres, J. Griffiths, Reversible plastic strain during cyclic loading–unloading of Mg and Mg–Zn alloys, Mater. Sci. Eng. A 456 (2007) 138-146.

DOI: 10.1016/j.msea.2006.11.160

Google Scholar

[41] U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip, in B. Chalmers, J.W. Christian, T.B. Massalski (Eds.), Progress in Materials Science, Pergamon Press, Oxford, 1975, pp.110-170.

Google Scholar

[42] J.W. Morris Jr, Overview of dislocation plasticity, in K.H.J. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. Kramer, S. Mahajan, P. Veyssiere (Eds.), Encyclopedia of Materials: Science and Technology, Pergamon Press, Oxford, 2001, p.4986.

DOI: 10.1016/b0-08-043152-6/01863-5

Google Scholar

[43] R.E. Reed-Hill, E.P. Dahlberg, W.A. Slippy Jr, Some anelastic effects in Zirconium at room temperature resulting from prestrain at 77 deg K, Trans. Met. Soc. AIME. 233 (1965) 1766-1771.

Google Scholar

[44] S. Agnew, C. Tomé, D. Brown, T. Holden, S. Vogel, Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling, Scr. Mater. 48 (2003) 1003-1008.

DOI: 10.1016/s1359-6462(02)00591-2

Google Scholar