[1]
H. Taher, S. Al-Zuhair, A.H. Al-Marzouqi, Y. Haik, M. Farid, Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: Process optimization and integration, Biochem. Eng. J. (2014) 90 103–113.
DOI: 10.1016/j.bej.2014.05.019
Google Scholar
[2]
C.C Akoh, S.W. Chang, G.C. Lee, J.F. Shaw, Enzymatic approach to biodiesel production, J. Agric. Food Chem. 55 (2007) 8995.
DOI: 10.1021/jf071724y
Google Scholar
[3]
M. Modi, B.V.S.K Rao, J.R.C Rady, R.B.N Prasad, Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor, Bioresour. Technol, 98 6 (2007) 1260–1264.
DOI: 10.1016/j.biortech.2006.05.006
Google Scholar
[4]
Y. Shimada, Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, Y. Tominaga, Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase, J. Am. Oil Chem. Soc. 76 (1999) 7 789–793.
DOI: 10.1007/s11746-999-0067-6
Google Scholar
[5]
E. Ali, M.K. Hadj-Kali, S Mulyono, I. Alnashef, A. Fakeeha, F.Mjalli, A Hayyan, Solubility Of CO2 In deep eutetic solvents: experiments and modelling using the Peng-Robinson equation of state, Chemical Engineering Research and Design (2014) 9.
DOI: 10.1016/j.cherd.2014.02.004
Google Scholar
[6]
H. Zhao, C. Zhang, T.D. Crittle, Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil, Journal of Molecular Catalysis B: Enzymatic (2013) 243– 247.
DOI: 10.1016/j.molcatb.2012.09.003
Google Scholar
[7]
Q. Zhang, K.D.O Vigier, S. Royer, F. Jerome, Deep eutectic solvents: Synthesis, properties and applications, Chem. Soc. Rev. (2012) 41 7108−7146.
DOI: 10.1039/c2cs35178a
Google Scholar
[8]
R. Manurung, Taslim, R. Hasibuan, R. Wulandari, Transesterification process of palm oil using novozym®435 in choline chloride (CHCL) ionic liquid system to produce biodiesel, ARPN Journal of Engineering and Applied Sciences, (2016) 11 16.
DOI: 10.1088/1757-899x/796/1/012056
Google Scholar
[9]
A. Bajaj, P. Lohan, P.B Jha, R. Mehrotra, Biodiesel production through lipase catalyzed Transesterification an overview, Journal of Molecular Catalysis B: Enzymatic, (2010) 62 1 9-14.
DOI: 10.1016/j.molcatb.2009.09.018
Google Scholar
[10]
M. Hayyan, A.M.A Abo-Hamad, M.A AlSaadi, Hashim, Functionalization of grapheme using deep eutectic solvents, Nanoscale Research Letters 10. (2015) 324-350.
DOI: 10.1186/s11671-015-1004-2
Google Scholar
[11]
H.M. Badawi, W. Förner, Analysis of the infrared and Raman spectra of phenylacetic acid and mandelic (2-hydroxy-2-phenylacetic) acid, Spectrochimica Acta Part A (2011) 78 1162-1167.
DOI: 10.1016/j.saa.2010.12.070
Google Scholar
[12]
S.P Ventura, L.D Santos, J.A Saraiva, J.A Coutinho, Concentration effect of hydrophilic ionic liquids on the enzymatic activity of candida antarctica lipase B, World Journal of Microbiology and Bitechnology. (2012) 28 6 2303-2310.
DOI: 10.1007/s11274-012-1037-y
Google Scholar
[13]
E. Wehtje, P. Adlercreutz, Water activity and substrate concentration effects on lipase activity, Biotechnology and Bioengineering, (1997) 55 5 798–806.
DOI: 10.1002/(sici)1097-0290(19970905)55:5<798::aid-bit10>3.0.co;2-8
Google Scholar
[14]
T. Kobayashi, T. Matsuo, K. Kimura, S. Adachi, Thermal stability of immobilized lipase from candida antarctica in glycerols with various water contents at elevated temperatures, Journal of The American Oil Chemists Society, (2008) 85 11 1041-1044.
DOI: 10.1007/s11746-008-1285-z
Google Scholar