Performance Analysis of Scheffler Solar Concentrator for Turmeric Blanching

Article Preview

Abstract:

Blanching is an important stage of post harvesting processing of turmeric, which destroys the viability of the fresh rhizomes and eliminates the raw odor. Large amount of crop residue and wood is consumed during conventional turmeric boiling process. Solar-based turmeric blanching system had been developed to show the viability of concentrated solar power for agricultural produce processing and contribute to CO2 mitigation. Experiments were conducted for several days in the month of April 2019, to study the performance of 16-m2 Scheffler concentrator for turmeric blanching. Turmeric was blanched in batches of 10 kg. Average 110 kg turmeric was successfully processed in a day. From the experimental data analysis, it is perceived that the thermal performance of the system directly depends on beam radiation. Average efficiency of 19.35 % was achieved with average beam radiation 721 W/m2. Minimum blanching time was found as 27 minutes with an average steam flow rate 5.30 kg/hr. Power available at reflector, receiver, and blanching vessel is presented to identify energy losses at each component of blanching system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-22

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Rabha, S. Ghosh, and P. K. Padhy, Effects of biomass burning on pulmonary functions in tribal women in northeastern India, Women Heal., 59 (2019)229–239.

DOI: 10.1080/03630242.2018.1452834

Google Scholar

[2] B. Kocaadam and N. Şanlier, Curcumin, an active component of turmeric (Curcuma longa), and its effects on health, Crit. Rev. Food Sci. Nutr., vol. 57 (2017) 2889–2895.

DOI: 10.1080/10408398.2015.1077195

Google Scholar

[3] G. U. Shinde, K. J. Kamble, M. G. Harkari, and G. R. More, Process Optimization in Turmeric Heat Treatment by Design and Fabrication of Blancher, Int. Conf. Environ. Agric. Eng. , vol. 15 (2011) p.36–41.

Google Scholar

[4] S. Balasubramanian, P. Roselin, K. K. Singh, J. Zachariah, and S. N. Saxena, Postharvest processing and benefits of black pepper, coriander, cinnamon, fenugreek, and turmeric spices, Crit. Rev. Food Sci. Nutr., 56 (2016)1585–1607.

DOI: 10.1080/10408398.2012.759901

Google Scholar

[5] N. R. Avezova, A. E. Khaitmukhamedov, A. Y. Usmanov, and B. B. Boliyev, Solar thermal power plants in the world: The experience of development and operation, Appl. Sol. Energy (English Transl. Geliotekhnika), 53 (2017) 72–77.

DOI: 10.3103/s0003701x17010030

Google Scholar

[6] Y. M. Lytvynenko, V. P. Zalutsky, O. D. Kostenko, N. S. Zyiatkevich, and A. O. Perekos, Surface coatings obtaining by self-propagating high-temperature synthesis using concentrated solar irradiation, Appl. Sol. Energy (English Transl. Geliotekhnika), 51 (2015) 133–135.

DOI: 10.3103/s0003701x15020073

Google Scholar

[7] T. P. Salikhov, V. V. Kan, E. M. Urazaeva, T. V. Savatyugina, G. M. Arushanov, and S. N. Kan, Use of concentrated solar radiation to obtain porous ceramics with NZP-structure in Na-Zr-Si-P-O system,, Appl. Sol. Energy (English Transl. Geliotekhnika), 45 (2009) 287–291.

DOI: 10.3103/s0003701x09040161

Google Scholar

[8] A. Kumar, O. Prakash, and A. K. Kaviti, A comprehensive review of Scheffler solar collector, Renew. Sustain. Energy Rev., 77 (2017) 890–898.

DOI: 10.1016/j.rser.2017.03.044

Google Scholar

[9] S. Lokeswaran and M. Eswaramoorthy, Experimental studies on solar parabolic dish cooker with porous medium 1, Appl. Sol. Energy (English Transl. Geliotekhnika), 48, (2012) 169–174.

DOI: 10.3103/s0003701x12030097

Google Scholar

[10] S. Kumar, V. Yadav, U. Sahoo, and S. K. Singh, Experimental investigation of 16 square meter Scheffler concentrator system and its performance assessments for various regions of India, Therm. Sci. Eng. Prog., 10 (2019) 103–111.

DOI: 10.1016/j.tsep.2019.01.006

Google Scholar

[11] A. G. Mohod, Y. P. Khandetod, and S. Sengar, Eco-friendly utilization of parabolic concentrating solar cooker for extraction of cashew nut shell oil and household cooking, Int. J. Sustain. Energy, 29 (2010) 125–132.

DOI: 10.1080/14786460903497383

Google Scholar

[12] R. J. Patil, G. K. Awari, and M. P. Singh, Experimental analysis of scheffler reflector water heater, Therm. Sci., 15 (2011) 599–604.

DOI: 10.2298/tsci100225058p

Google Scholar

[13] M. Eswaramoorthy and S. Shanmugam, The thermal performance of a low cost solar parabolic dish collector for process heat, Energy Sources, Part A Recover. Util. Environ. Eff., 34, (2012) 1731–1736.

DOI: 10.1080/15567036.2010.490825

Google Scholar

[14] A. A. Sagade, Comparative experimental analysis of the effect of convective heat losses on the performance of parabolic dish water heater, Int. J. Sustain. Eng., 6 (2013) 258–266.

DOI: 10.1080/19397038.2012.691566

Google Scholar

[15] M. Aramesh et al., A review of recent advances in solar cooking technology, Renew. Energy, 140 (2019) 419–435.

Google Scholar

[16] H. Panchal, R. Patel, and R. Sathyamurthy, Investigation and performance analysis of solar milk pasteurisation system, Int. J. Ambient Energy, (2019) 1–24.

DOI: 10.1080/01430750.2018.1557552

Google Scholar

[17] R. Silva, F. J. Cabrera, and M. Pérez-García, Process heat generation with parabolic trough collectors for a vegetables preservation industry in Southern Spain, Energy Procedia, vol. 48 (2014) 1210–1216.

DOI: 10.1016/j.egypro.2014.02.137

Google Scholar

[18] A. Munir, O. Hensel, W. Scheffler, H. Hoedt, W. Amjad, and A. Ghafoor, Design, development and experimental results of a solar distillery for the essential oils extraction from medicinal and aromatic plants, Sol. Energy, 108 (2014) 548–559.

DOI: 10.1016/j.solener.2014.07.028

Google Scholar

[19] N. Mbodji and A. Hajji, Performance Testing of a Parabolic Solar Concentrator for Solar Cooking, J. Sol. Energy Eng. Trans. ASME, 138 (2016).

DOI: 10.1115/1.4033501

Google Scholar

[20] I. Ayub, A. Munir, A. Ghafoor, W. Amjad, and M. S. Nasir, Solar Thermal Application for Decentralized Food Baking Using Scheffler Reflector Technology, J. Sol. Energy Eng., 140, (2018).

DOI: 10.1115/1.4040206

Google Scholar

[21] A. Kumar, S. K. Shukla, and A. Kumar, Heat loss analysis: An approach toward the revival of parabolic dish type solar cooker, Int. J. Green Energy, vol. 15 (2018) 96–105.

DOI: 10.1080/15435075.2018.1423978

Google Scholar

[22] S. Srivastava and A. Yadav, Extraction of water particles from atmospheric air through a Scheffler reflector using different solid desiccants, Int. J. Ambient Energy, p. https://doi.org/10.1080/01430750.2018.1517667, (2018).

DOI: 10.1080/01430750.2018.1517667

Google Scholar

[23] W. Farzana, T. Pandiarajan, and S. Ganapathy, Development of mobile boiling system for turmeric (Curcuma longa), Innov. Food Sci. Emerg. Technol., 47 (2018) 428–438.

DOI: 10.1016/j.ifset.2018.04.014

Google Scholar

[24] A. Munir, O. Hensel, and W. Scheffler, Design principle and calculations of a Scheffler fixed focus concentrator for medium temperature applications, Sol. Energy,. 84 (2010) 1490–1502.

DOI: 10.1016/j.solener.2010.05.011

Google Scholar

[25] I. M. Michaelides, W. C. Lee, D. R. Wilson, and P. P. Votsis, Computer simulation of the performance of a thermosyphon solar water-heater, Appl. Energy, 41 (1992) 149–163.

DOI: 10.1016/0306-2619(92)90042-a

Google Scholar

[26] M. Cheralathan, M. Sornanathan, and V. Thirunavukkarasu, An experimental study on energy and exergy performance of a cavity receiver for solar parabolic dish concentrator, Int. J. Exergy, 23 (2017)129.

DOI: 10.1504/ijex.2017.10006100

Google Scholar

[27] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, Fourth edi. Hoboken, New Jersey: John Wiley & Sons, (2013).

Google Scholar

[28] G. Jeevarathinam and T. Pandiarajan, Thermal Properties of Turmeric Rhizomes, Adv. Life Sci., 5 (2016) 5167–5170.

Google Scholar

[29] R. J. Moffat, Describing the uncertainties in experimental results,, Exp. Therm. Fluid Sci., (1988) 3–17.

Google Scholar

[30] A. Prathapan, M. Lukhman, C. Arumughan, A. Sundaresan, and K. G. Raghu, Effect of heat treatment on curcuminoid, colour value and total polyphenols of fresh turmeric rhizome, Int. J. Food Sci. Technol., 44 (2009) 1438–1444.

DOI: 10.1111/j.1365-2621.2009.01976.x

Google Scholar