Corrosion Protection of Mild Steel by a New Phosphonated Pyridines Inhibitor System in HCl Solution

Article Preview

Abstract:

The adsorption behavior and inhibition mechanism of (1, 4, 7-Tris [hydrogen (6-methylpyridin-2-yl) phosphonate] -1, 4, 7-triazacyclononane) (TPP) on the corrosion of mild steel in 1 M HCl were investigated by weight loss technique, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) methods for different concentrations at 25°C. The results show that the inhibition efficiency values depend on the amount of immersion times and the concentration. A 90% efficiency is found at the highest concentration of the studied compound according to weight loss measurements. The adsorption of the investigated inhibitor on the mild steel surface was well supported using an AFM study. For the assignment of the absorption sites, we performed quantum chemical calculations with (DFT) method. The interaction between the inhibitor and iron surface were performed by molecular dynamic (MD) simulations. In this paper, experimental methods and results used to assess the efficiency of the studied compound are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-75

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Shymala, P.K. Kasthuri, The inhibitory action of the extracts of Adathodavasica, Ecliptaalba, and Centellaasiatica on the corrosion of mild steel in hydrochloric acid medium: a comparative study, Int. J. Corros. (2012) 1–13.

Google Scholar

[2] L.R. Chauhan, G. Gunasekauran, Corrosion inhibition of mild steel by plant extract in dilute HCl medium, Corros. Sci. 49 (2007) 1143–1161.

DOI: 10.1016/j.corsci.2006.08.012

Google Scholar

[3] S.S. Shivakumar, K.N.S. Mohana, Ziziphusmauritiana leaves extracts as corrosion inhibitor for mild steel in H2SO4 and HCl solutions, Eur. J. Chem. 3 (2012) 426–432.

DOI: 10.5155/eurjchem.3.4.426-432.671

Google Scholar

[4] M.A. Quraishi, A. Singh, V.K. Singh, D.K. Yadav, A.K. Singh, Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murrayakoenigii leaves, Mater. Chem. Phys. 122 (2010) 114–122.

DOI: 10.1016/j.matchemphys.2010.02.066

Google Scholar

[5] G. Avci, Inhibitor effect of N,N-methylenediacrylamide on corrosion behavior of mild steel in 0.5 M HCl, Mater. Chem. Phys. 112 (2008) 234–238.

DOI: 10.1016/j.matchemphys.2008.05.036

Google Scholar

[6] E.S. Meresht, T.S. Farahani, J. Neshati, 2-Butyne-1,4-diol as anovel corrosion inhibitor for API X65 steel pipeline in carbon-ate/bicarbonate solution, Corros. Sci. 54 (2012) 36–44.

DOI: 10.1016/j.corsci.2011.08.052

Google Scholar

[7] M. Heydari, M. Javidi, Corrosion inhibition and adsorption XXXáterXXXor of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions, Corros. Sci. 61 (2012) 148–155.

DOI: 10.1016/j.corsci.2012.04.034

Google Scholar

[8] X. Jiang, Y.G. Zheng, W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution, Corros. Sci. 47 (2005) 2636–2658.

DOI: 10.1016/j.corsci.2004.11.012

Google Scholar

[9] A.Garnica-Rodriguez, J. Genesca, J. Mendoza-Flores, R. Duran-Romero, Electrochemical evaluation of aminotriazole corrosion inhibitor under flow conditions, J. Appl. Electrochem. 39 (2009) 1809–1819.

DOI: 10.1007/s10800-009-9884-4

Google Scholar

[10] P.C. Okafor, X. Liu, Y.G. Zheng, Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corros. Sci. 51 (2009) 761– 768.

DOI: 10.1016/j.corsci.2009.01.017

Google Scholar

[11] A.A. Mazhar, W.A. Badaway, M.M. Abou-Romia. Impedance studies of corrosion resistance of aluminium in chloride media. Surf.Coat.Techol. 29 (1986) 335-345.

DOI: 10.1016/0257-8972(86)90006-x

Google Scholar

[12] A. Zarrouk, B. Hammouti, H. Zarrok, R. Salghi, A. Dafali, Lh.Bazzi, L. Bammou, S.S. Al-Deyab, Electrochemical impedancespectroscopy and weight loss study for new pyridazinederivativeas inhibitor for copper in nitric acid, Der Pharm. Chem. 4 (2012)337–346.

DOI: 10.1007/s11164-012-0548-3

Google Scholar

[13] M. Gopiraman, N. Selvakumaran, D. Kesavan, R. Karvembu, Adsorption and corrosion inhibition XXXáterXXXor of N-(phenylcarbamothioyl)benzamide on mild steel in acidic medium, Prog. Org. Coat. 73 (2012) 104–111.

DOI: 10.1016/j.porgcoat.2011.09.006

Google Scholar

[14] H. Hamani, T. Douadi, M. Al-Noaimi, S. Issaadi, D. Daoud, S. Chafaa. Electro- chemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1 M hydrochloric acid.CorrosSci 88 (2014) 234–245.

DOI: 10.1016/j.corsci.2014.07.044

Google Scholar

[15] S.L. Granese, B.M. Rosales, C. Oviedo, J.O. Zerbino. The inhibition action of hete- rocyclic nitrogen organic compounds on Fe and steel in HClmedia.CorrosionSci 33(1992)1439–53.

DOI: 10.1016/0010-938x(92)90182-3

Google Scholar

[16] El Ashry E , El Nemr A , Essawy S , Ragab S . Corrosion inhibitors part V: QSAR of benzimidazole and 2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters. Prog Org Coat 61 (2008)11–20.

DOI: 10.1016/j.porgcoat.2007.08.009

Google Scholar

[17] M. Djenane, S. Chafaa, N. Chafai, R. Kerkour, A. Hellal. Synthesis, spectral properties and corrosion inhibition efficiency of new ethyl hydrogen [(methoxyphenyl) (methylamino) methyl] phosphonate derivatives: Experimental and theoretical investigation. Journal of Molecular Structure. 1175 (2018) 398 ̶ 413.

DOI: 10.1016/j.molstruc.2018.07.087

Google Scholar

[18] M.R. Laamari, J. Benzakour, F. Berrekhis, A. Derja, D. Villemin. Adsorption and corrosion inhibition of mild steel in hydrochloric acid medium by hexamethylenediamine tetra(methylene phosphonic acid) Arabian Journal of Chemistry 9 (2016) 245–251.

DOI: 10.1016/j.arabjc.2011.03.018

Google Scholar

[19] H.Amar, J.Benzakour, A.Derja, D.Villemin, B.Moreau, T.Braisaz.Piperidin-1-yl-phosphonic acid and (4-phosphono-piperazin-1-yl) phosphonic acid: A new class of iron corrosion inhibitors in sodium chloride 3% media. Applied Surface Science 252 (2006) 6162-6172.

DOI: 10.1016/j.apsusc.2005.07.073

Google Scholar

[20] K.Benbouguerra, S. Chafaa, N. Chafai, M. Mehri, O. Moumeni, A. Hellal. Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an α-aminophosphonate and Schiff base derivatives: Experimental and theoretical investigations. Journal of Molecular Structure. 1157 (2018) 165 ̶ 176.

DOI: 10.1016/j.molstruc.2017.12.049

Google Scholar

[21] J.Salaam,L.Tabti,S.Bahamyirou,A.Lecointre O.H. Alba,O.Jeannin,F.Camerel,S. Cianférani,E.Bentouhami, A.M. Nonat,and L.J. Charbonnière. Formation of Mono-and Polynuclear Luminescent Lanthanide Complexes based on the Coordination of PreorganizedPhosphonated Pyridines Inorg. Chem. 57 (2018) 6095−6106.

DOI: 10.1021/acs.inorgchem.8b00666

Google Scholar

[22] A. Nonat, S. Bahamyrou, A. Lecointre, F. Przybilla, Y. Mély, C. Platas-Iglesias, F. Camerel, O. Jeannin, L.J. Charbonnière, Molecular upconversion in XXXáter in heteropolynuclear supramolecular Tb/Yb assemblies J. Am. Chem. Soc. 2019, 141, 1568-1576.

DOI: 10.1021/jacs.8b10932

Google Scholar

[23] J.V. Nardeli, C.S. Fugivara, M.Taryba, E.R.P. Pjnto, M.F. Montemor, A.V. Benedetti, Tannin:A natural inhibitorforaluminumalloys, Progress in OrganicCoatings, ISSN:0300-9440,135(2019)368-381.

DOI: 10.1016/j.porgcoat.2019.05.035

Google Scholar

[24] J.C.da Rocha, J.A.C.P. Gomes, E.D'Elia, Corrosioninhibition of carbon Steel in hydrochloricacidsolutionbyfruitpeelaqueousextracts. Corros.,Sci. 52(2010), pp.2341-2348, 10.1016/J.corsci.2010.03.033.

Google Scholar

[25] A. A. Farag, M.R. Noor El-Din, The adsorption and corrosion inhibition of some nonionic surfactants on API X65 steel surface in hydrochloric acid, Corros. Sci. 64 (2012) 174–183.

DOI: 10.1016/j.corsci.2012.07.016

Google Scholar

[26] D.K. Yadav, M.A. Quraishi, B. Maiti, Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation. Corros. Sci. 55 (2012) 254–266.

DOI: 10.1016/j.corsci.2011.10.030

Google Scholar

[27] Z. Tao, S. Zhang, W. Li, B. Hou, Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives.Corros.Sci.51 (2009) 2588-2595.

DOI: 10.1016/j.corsci.2009.06.042

Google Scholar

[28] M.Shahin, S.Bilgic, H.Yilmaz, The inhibition effects of some cyclic nitrogen compoundson the corrosion of the steel in NaCl medium. Appl. Surf. Sci. 195(2003) 1–7.

Google Scholar

[29] A.D. Becke, A new mixing of Hartree–Fock and local density‐functional theories. J.Chem.Phys 98 (1993)1372-1377.

DOI: 10.1063/1.464304

Google Scholar

[30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A1, Gaussian, Inc., Wallingford, CT, (2009).

Google Scholar

[31] B. Ramaganthan, M. Gopiraman, L.O. Olasunkanmi, M.M. Kabanda, S. Yesudass, I. Bahadur, A.S. Adekunle, I.B. Obot, E.E. Ebenso, Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies, RSC Adv. 5 (2015) 76675–76688.

DOI: 10.1039/c5ra12097g

Google Scholar

[32] E.E. Oguzie, C.B. Adindu, C.K. Enenebeaku, C.E. Ogukwe M.A. Chidiebere, K.L. Oguzie, Natural products for materials protection: mechanism of corrosion inhibition of mild steel by acid extracts of Piper guineense, J. Phys. Chem. C 116 (2012) 13603–13615.

DOI: 10.1021/jp300791s

Google Scholar

[33] R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem., 27 (1988), PP. 734-740, 10.1016/J.corsci.2008.08.043.

DOI: 10.1021/ic00277a030

Google Scholar

[34] V.S. Sastri, J.R. Perumareddi . Molecular orbital theoretical studies of some or- ganic corrosion inhibitors.Corrosion 53 (1997) 617–629.

DOI: 10.5006/1.3290294

Google Scholar

[35] Materials studio, 7.0 San Diego, CA: Accelrys Inc.; (2013).

Google Scholar

[36] I.B. Obot, N.O. Obi-Egbedi. Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: experimental and theoretical investigations, Curr. Appl. Phys. 11 (2011) 382–392.

DOI: 10.1016/j.cap.2010.08.007

Google Scholar

[37] A.K. Maayta, N.A.F. Al-Rawashdeh. Inhibition of acidic corrosion of pure aluminum by some organic compounds.Corros. Sci. 46 (2004) 1129-1140.

DOI: 10.1016/j.corsci.2003.09.009

Google Scholar

[38] J. Aljourani, K. Raeissi, M.A. Golozar. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros. Sci. 51 (2009) 1836-1843.

DOI: 10.1016/j.corsci.2009.05.011

Google Scholar

[39] C.Cao. On Electrochemical technique for interface inhibitor research.Corrs.Sci.38 (1996) 2073-2082.

Google Scholar

[40] I.B .Obot, N.O. Obi-Egbedi, N.W. Odozi. Acenaphtho[1,2-b] quinoxaline as a novel corrosion inhibitor for mild steel in 0.5M H2SO4. Corros. Sci. 52(2010) 923–926.

DOI: 10.1016/j.corsci.2009.11.013

Google Scholar

[41] N.Labjar, M.Lebrini, F.Bentiss, N.E. Chihib, S.ElHadjjaji, C.Jama. Corrosion inhibition of mild steel and antibacterial proprieties of aminotris(methyl nephosnic) acid,Mater.Chem.Phys.119 (2010) 330-336.

DOI: 10.1016/j.matchemphys.2009.09.006

Google Scholar

[42] F.Bentiss, M. Lebrini, M. Lagrenee, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)- 1,3,4-thiadiazoles/hydrochloric acid system, Corros. Sci. 47 (2005) 2915–2931.

DOI: 10.1016/j.corsci.2005.05.034

Google Scholar

[43] W. Li, Q. He, S. Zhang, C. Pei, B. Hou, Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium J. Appl. Electrochem. 38 (2008) 289–295.

DOI: 10.1007/s10800-007-9437-7

Google Scholar

[44] C.M. Goulart, A. Esteves-Souza, C.A. Martinez-Huitle, C.J.F. Rodrigues, M.A.M. Maciel, A. Echevarria, Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors, Corros. Sci. 67 (2013) 281–291.

DOI: 10.1016/j.corsci.2012.10.029

Google Scholar

[45] R. Hasanov, M. Sadıkoğlu, S. Bilgic, Electrochemical and quantum chemical studies of some Schiff bases on the corrosion of steel in H2SO4 solution, Appl. Surf. Sci. 253 (2007) 3913–3921.

DOI: 10.1016/j.apsusc.2006.08.025

Google Scholar

[46] G. Gece .The use of quantum chemical methods in corrosion inhibitor studies.CorrosSci 50 (2008) 2981–2992.

DOI: 10.1016/j.corsci.2008.08.043

Google Scholar

[47] E. Jamalizadeh, S.M.A. Hosseini, A.H. Jafari. Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media.CorrosSci 51 (2009) 1428–1435.

DOI: 10.1016/j.corsci.2009.03.029

Google Scholar

[48] K. F. Khaled .Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines.CorrosSci 52 (2010) 2905–2916.

DOI: 10.1016/j.corsci.2010.05.001

Google Scholar

[49] I. Lukovits, K. Pálfi, I. Bakó, E. Kálmán. LKP model of the inhibition mechanism of thiourea compounds. Corrosion 53 (1997) 915–919.

DOI: 10.5006/1.3290275

Google Scholar

[50] A.Y. Musa, A.A.H. Kadhum, A.B. Mohamad, A.A. Rahoma, H. Mesmari, Electrochemical and quantum chemical calculations on 4,4- dimethyloxazolidine-2-thione as inhibitor for mild steel corrosion in hydrochloric acid, J. Mol. Struct. 969 (2010) 233–237.

DOI: 10.1016/j.molstruc.2010.02.051

Google Scholar

[51] M. Finšgar, A. Lesar, A. Kokalj, I. Milošev, A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution, Electrochim. Acta 53 (28) (2008) 8287–8297.

DOI: 10.1016/j.electacta.2008.06.061

Google Scholar

[52] D. Zhang, Z. An, Q. Pan, L. Gao, G. Zhou, Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for mild steel, Corrosion Sci. 48 (2006) 1437-1448.

DOI: 10.1016/j.corsci.2005.06.007

Google Scholar

[53] A.S. Fouda, A.S. Ellithy. Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HClsolution.Corros. Sci. 51 (2009) 868–875.

DOI: 10.1016/j.corsci.2009.01.011

Google Scholar

[54] R.M. Issa, M.K. Awad, F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils, Appl. Surf. Sci. 255 (2008) 2433-2441.

DOI: 10.1016/j.apsusc.2008.07.155

Google Scholar

[55] M. Lashkari, M.R. Arshadi, DFT studies of pyridine corrosion inhibitors inelectrical double layer: solvent, substrate, and electric field effects, Chem.Phys. 299 (2004) 131-137.

DOI: 10.1016/j.chemphys.2003.12.019

Google Scholar

[56] I. Lukovits, E. Kálmán, F. Zucchi, Corrosion inhibitors-correlation between electronic structure and efficiency, Corrosion 57 (2001) 3-8.

DOI: 10.5006/1.3290328

Google Scholar

[57] N. Chafai, S. Chafaa, K. Benbouguerra, D. Daoud, A. Hellal, M. Mehri. Synthesis, characterization and the inhibition activity of a new αaminophosphonic derivative on the corrosion of XC48 mild steel in 0.5 M H2SO4: Experimental and theoretical studies..Journal of the Taiwan Institute of Chemical Engineers 70 (2017) 331–344.

DOI: 10.1016/j.jtice.2016.10.026

Google Scholar