[1]
Alaxala Networks Co., Ltd., Security measures using whitelist switches,, Journal of the Society of Instrument and Control Engineers, vol.57, no.1, pp.51-52, Jan 2018, (in Japanese).
Google Scholar
[2]
R. Bar - Yanai, M. Langberg, D. Peleg and L. Roditty, Realtime Classification for Encrypted Traffic,, Proc. International Symposium on Experimental Algorithms (SEA 2010), LNCS6049. Springer, Berlin, Heidelberg, pp.373-385, 2010.
DOI: 10.1007/978-3-642-13193-6_32
Google Scholar
[3]
R. Berthier, W. H. Sanders and H. Khurana, Intrusion Detection for Advanced Metering Infrastructures: Requirements and Architectural Directions,, Proc 1st IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, pp.350-355, 2010.
DOI: 10.1109/smartgrid.2010.5622068
Google Scholar
[4]
V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio and J. Solé-Pareta, Analysis of the impact of sampling on NetFlow traffic classification,, Computer Networks, vol.55, pp.1083-1099, Iss.5, 2011,.
DOI: 10.1016/j.comnet.2010.11.002
Google Scholar
[5]
H. H. Chang and Ching. S. Chang, An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan,, BMC Health Serv. Res. 20088:87,.
DOI: 10.1186/1472-6963-8-87
Google Scholar
[6]
E. Y. Chen and M. Itoh, A whitelist approach to protect SIP servers from flooding attacks,, Proc IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2010), Vancouver, BC, pp.1-6, 2010.
DOI: 10.1109/cqr.2010.5619917
Google Scholar
[7]
A. Dainotti, A. Pescape and K. C. Claffy, Issues and future directions in traffic classification," IEEE Network, vol. 26, no. 1, pp.35-40, January-February 2012.
DOI: 10.1109/mnet.2012.6135854
Google Scholar
[9]
M. Gan, C. Wang and C. Zhu, Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings,, Mechanical Systems and Signal Processing, vol.72-73, pp.92-104, 2016, DOI; 10.1016/j.ymssp.2015.11.014.
DOI: 10.1016/j.ymssp.2015.11.014
Google Scholar
[10]
S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and H. Yu, RE: reliable email," Proc. 3rd conference on Networked Systems Design and Implementation (NSDI,06), vol.3. Berkeley, USA, pp.22-22, (2006).
Google Scholar
[11]
T. Goto, C. Sasaki, A. Tachibana and S. Ano, Low-cost traffic classification method for largescale ISP,, IPSJ Journal, vol.53, no.2, pp.712-723, 2012, (in Japanese).
Google Scholar
[12]
W. Jung, J. Yun, S. Kim, K. Shim and M. Kim, Structured whitelist generation in SCADA network using PrefixSpan algorithm,, Proc 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea, pp.326-326, 2017.
DOI: 10.1109/APNOMS.2017.8094163
Google Scholar
[13]
T. Karagiannis, K. Papagiannaki and M. Faloutsos, BLINC : Multilevel traffic classification in the dark,, Proc. ACM SIGCOMM 2005, Pennsylvania, USA, pp.21-25, Aug. 2005.
DOI: 10.1145/1090191.1080119
Google Scholar
[14]
S. Kondo and N. Sato, Botnet Traffic Detection Techniques by C&C Session Classification Using SVM,, Proc. Advances in Information and Computer Security (IWSEC 2007). LNCS 4752. Springer, Berlin, Heidelberg, pp.91-104, 2007,.
DOI: 10.1007/978-3-540-75651-4_7
Google Scholar
[15]
W. Moore and K. Papagiannaki, Toward the accurate identification of network applications," Proc. 6th International Conf. on Passive and Active Network Measurement (PAM,05), Constantinos Dovrolis (Ed.). Springer-Verlag, Berlin, Heidelberg, pp.41-54. 2005.
DOI: 10.1007/978-3-540-31966-5_4
Google Scholar
[16]
T. T. T. Nguyen and G. Armitage, A survey of techniques for internet traffic classification using machine learning,, IEEE Communications Surveys & Tutorials, vol. 10, no. 4, pp.56-76, Fourth Quarter 2008.
DOI: 10.1109/SURV.2008.080406
Google Scholar
[17]
R. Ramos, R. Barbosa, A. Pras and R. Sadre, Flow whitelisting in SCADA networks,, International Journal of Critical Infrastructure Protection, vol.6, iss.3-4, pp.150-158, 2013.
DOI: 10.1016/j.ijcip.2013.08.003
Google Scholar
[18]
Y. Shinagawa and H. Hashimoto, Current Status Data of Breaches Involving Patients' Personal Information at Medical Facilities,, An Official Journal of the Japan Association for Medical Informatics, vol.33, no.6, pp.311-319, 2013.
Google Scholar
[19]
M. Stites and O. S. Pianykh, How Secure Is Your Radiology Department? Mapping Digital Radiology Adoption and Security Worldwide,, Am. J. Roentgenol, vol.206, no.4, pp.797-804, Apr. 2016.
DOI: 10.2214/AJR.15.15283
Google Scholar
[20]
S. Tang, S. Shen, D. Wang, S. Liu, W. Huang and Z. Zhu, Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis," Neurocomputing, vol.305, pp.1-14, 2018. DOI: 10.1016/j.neucom.2018.04.048.[21] V. F. Taylor, R. Spolaor, M. Conti and I. Martinovic, "Robust Smartphone App Identification via Encrypted Network Traffic Analysis,, IEEE Transactions on Information Forensics and Security, vol.13, no.1, pp.63-78, 2018.
DOI: 10.1109/TIFS.2017.2737970
Google Scholar
[22]
W. Wu, J. Alvarez, C. Liu, H. M. Sun, Bot detection using unsupervised machine learning,, Microsystem Technologies, vol.24 no.1, pp.209-217, 2018.
DOI: 10.1007/s00542-016-3237-0
Google Scholar
[23]
Y. Yang, K. McLaughlin, S. Sezer, T. Littler, E. G. Im, B. Pranggono and H. F. Wang, Multiattribute SCADA-Specific Intrusion Detection System for Power Networks,, IEEE Transactions on Power Delivery, vol. 29, no. 3, pp.1092-1102, 2014.
DOI: 10.1109/TPWRD.2014.2300099
Google Scholar
[24]
L. H. Yu and Y. D. Yan, A learning approach to spam detection based on social networks,, Proc 4th Conference on Email and Anti-Spam (CEAS), Mountain View, USA , (2007).
Google Scholar
[25]
J. H. Yun, S. Jeon, K. H. Kim, and W. N. Kim, Burst-Based Anomaly Detection on the DNP3 Protocol,, International Journal of Control & Automation, vol.6, no.2, pp.313-324, (2013).
Google Scholar