Evaluation of a Network Switch with Whitelist-Based Packet Monitoring and Control in Hospital Networks

Article Preview

Abstract:

A "whitelist network switch (WLS)", which can monitor and filter packets based on a whitelist, is particularly effective for stronger information security in closed network environments, such as in factories. This paper focuses on the base network environment for a nurse call system within a large hospital. This network environment is of particular importance to security, and the types of network protocols used are limited. We note important points regarding the practical operation and effectiveness of WLS through two approaches: (i) test introduction into an existing, actual hospital network system; (ii) test introduction in an experimental nurse call system environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-232

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alaxala Networks Co., Ltd., Security measures using whitelist switches,, Journal of the Society of Instrument and Control Engineers, vol.57, no.1, pp.51-52, Jan 2018, (in Japanese).

Google Scholar

[2] R. Bar - Yanai, M. Langberg, D. Peleg and L. Roditty, Realtime Classification for Encrypted Traffic,, Proc. International Symposium on Experimental Algorithms (SEA 2010), LNCS6049. Springer, Berlin, Heidelberg, pp.373-385, 2010.

DOI: 10.1007/978-3-642-13193-6_32

Google Scholar

[3] R. Berthier, W. H. Sanders and H. Khurana, Intrusion Detection for Advanced Metering Infrastructures: Requirements and Architectural Directions,, Proc 1st IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, pp.350-355, 2010.

DOI: 10.1109/smartgrid.2010.5622068

Google Scholar

[4] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio and J. Solé-Pareta, Analysis of the impact of sampling on NetFlow traffic classification,, Computer Networks, vol.55, pp.1083-1099, Iss.5, 2011,.

DOI: 10.1016/j.comnet.2010.11.002

Google Scholar

[5] H. H. Chang and Ching. S. Chang, An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan,, BMC Health Serv. Res. 20088:87,.

DOI: 10.1186/1472-6963-8-87

Google Scholar

[6] E. Y. Chen and M. Itoh, A whitelist approach to protect SIP servers from flooding attacks,, Proc IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2010), Vancouver, BC, pp.1-6, 2010.

DOI: 10.1109/cqr.2010.5619917

Google Scholar

[7] A. Dainotti, A. Pescape and K. C. Claffy, Issues and future directions in traffic classification," IEEE Network, vol. 26, no. 1, pp.35-40, January-February 2012.

DOI: 10.1109/mnet.2012.6135854

Google Scholar

[9] M. Gan, C. Wang and C. Zhu, Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings,, Mechanical Systems and Signal Processing, vol.72-73, pp.92-104, 2016, DOI; 10.1016/j.ymssp.2015.11.014.

DOI: 10.1016/j.ymssp.2015.11.014

Google Scholar

[10] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and H. Yu, RE: reliable email," Proc. 3rd conference on Networked Systems Design and Implementation (NSDI,06), vol.3. Berkeley, USA, pp.22-22, (2006).

Google Scholar

[11] T. Goto, C. Sasaki, A. Tachibana and S. Ano, Low-cost traffic classification method for largescale ISP,, IPSJ Journal, vol.53, no.2, pp.712-723, 2012, (in Japanese).

Google Scholar

[12] W. Jung, J. Yun, S. Kim, K. Shim and M. Kim, Structured whitelist generation in SCADA network using PrefixSpan algorithm,, Proc 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea, pp.326-326, 2017.

DOI: 10.1109/APNOMS.2017.8094163

Google Scholar

[13] T. Karagiannis, K. Papagiannaki and M. Faloutsos, BLINC : Multilevel traffic classification in the dark,, Proc. ACM SIGCOMM 2005, Pennsylvania, USA, pp.21-25, Aug. 2005.

DOI: 10.1145/1090191.1080119

Google Scholar

[14] S. Kondo and N. Sato, Botnet Traffic Detection Techniques by C&C Session Classification Using SVM,, Proc. Advances in Information and Computer Security (IWSEC 2007). LNCS 4752. Springer, Berlin, Heidelberg, pp.91-104, 2007,.

DOI: 10.1007/978-3-540-75651-4_7

Google Scholar

[15] W. Moore and K. Papagiannaki, Toward the accurate identification of network applications," Proc. 6th International Conf. on Passive and Active Network Measurement (PAM,05), Constantinos Dovrolis (Ed.). Springer-Verlag, Berlin, Heidelberg, pp.41-54. 2005.

DOI: 10.1007/978-3-540-31966-5_4

Google Scholar

[16] T. T. T. Nguyen and G. Armitage, A survey of techniques for internet traffic classification using machine learning,, IEEE Communications Surveys & Tutorials, vol. 10, no. 4, pp.56-76, Fourth Quarter 2008.

DOI: 10.1109/SURV.2008.080406

Google Scholar

[17] R. Ramos, R. Barbosa, A. Pras and R. Sadre, Flow whitelisting in SCADA networks,, International Journal of Critical Infrastructure Protection, vol.6, iss.3-4, pp.150-158, 2013.

DOI: 10.1016/j.ijcip.2013.08.003

Google Scholar

[18] Y. Shinagawa and H. Hashimoto, Current Status Data of Breaches Involving Patients' Personal Information at Medical Facilities,, An Official Journal of the Japan Association for Medical Informatics, vol.33, no.6, pp.311-319, 2013.

Google Scholar

[19] M. Stites and O. S. Pianykh, How Secure Is Your Radiology Department? Mapping Digital Radiology Adoption and Security Worldwide,, Am. J. Roentgenol, vol.206, no.4, pp.797-804, Apr. 2016.

DOI: 10.2214/AJR.15.15283

Google Scholar

[20] S. Tang, S. Shen, D. Wang, S. Liu, W. Huang and Z. Zhu, Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis," Neurocomputing, vol.305, pp.1-14, 2018. DOI: 10.1016/j.neucom.2018.04.048.[21] V. F. Taylor, R. Spolaor, M. Conti and I. Martinovic, "Robust Smartphone App Identification via Encrypted Network Traffic Analysis,, IEEE Transactions on Information Forensics and Security, vol.13, no.1, pp.63-78, 2018.

DOI: 10.1109/TIFS.2017.2737970

Google Scholar

[22] W. Wu, J. Alvarez, C. Liu, H. M. Sun, Bot detection using unsupervised machine learning,, Microsystem Technologies, vol.24 no.1, pp.209-217, 2018.

DOI: 10.1007/s00542-016-3237-0

Google Scholar

[23] Y. Yang, K. McLaughlin, S. Sezer, T. Littler, E. G. Im, B. Pranggono and H. F. Wang, Multiattribute SCADA-Specific Intrusion Detection System for Power Networks,, IEEE Transactions on Power Delivery, vol. 29, no. 3, pp.1092-1102, 2014.

DOI: 10.1109/TPWRD.2014.2300099

Google Scholar

[24] L. H. Yu and Y. D. Yan, A learning approach to spam detection based on social networks,, Proc 4th Conference on Email and Anti-Spam (CEAS), Mountain View, USA , (2007).

Google Scholar

[25] J. H. Yun, S. Jeon, K. H. Kim, and W. N. Kim, Burst-Based Anomaly Detection on the DNP3 Protocol,, International Journal of Control & Automation, vol.6, no.2, pp.313-324, (2013).

Google Scholar