Additive Manufacturing: Post Processing Methods and Challenges

Article Preview

Abstract:

Additive Manufacturing (AM) has shown great potential for efficient realization of complicated microdevices fabricated with higher freedom of design and made from a wide variety of materials suiting to their specific target functionalities. Capability of generation of components with reduced weights, higher part consolidation, greater customization offered along with minimal waste generation are its advantages over conventional manufacturing processes. The AM built parts, however, need to undergo relevant post processing techniques to render them fit for their end product application. The paper attempts to classify the post processing techniques and emphasize their applicability to specific AM methods, generalized procedure as well as the recent improvements undergone. The post processing techniques have been categorised as methods for support material removal, surface texture improvements, thermal and non-thermal post processing and aesthetic improvements. The main challenges to the expansion of additive manufacturing have been discussed which highlight the future, scope of improvement and research required in the area of appropriate tool path development and product quality with regards to surface roughness, resolution and porosity levels in the built part.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-42

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bhushan, M. Caspers, An overview of additive manufacturing (3D printing) for microfabrication, Microsyst. Technol. (2017). https://doi.org/10.1007/s00542-017-3342-8.

DOI: 10.1007/s00542-017-3342-8

Google Scholar

[2] J. Kranz, D. Herzog, C. Emmelmann, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, J. Laser Appl. (2015). https://doi.org/10.2351/1.4885235.

DOI: 10.2351/1.4885235

Google Scholar

[3] N.N. Kumbhar, A. V. Mulay, Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review, J. Inst. Eng. Ser. C. (2018). https://doi.org/10.1007/s40032-016-0340-z.

DOI: 10.1007/s40032-016-0340-z

Google Scholar

[4] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, 2010. https://doi.org/10.1007/978-1-4419-1120-9.

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[5] P. Mishra, S. Sood, M. Pandit, A. Goel, P. Khanna, Additive Manufacturing (3D Printing): A Review on the Micro fabrication Methods, Int. J. Res. Appl. Sci. Eng. Technol. 8 (2020) 22. https://doi.org/http://doi.org/10.22214/ijraset.2020.4160.

Google Scholar

[6] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng. (2018). https://doi.org/10.1016/j.compositesb.2018.02.012.

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[7] B. Utela, D. Storti, R. Anderson, M. Ganter, A review of process development steps for new material systems in three dimensional printing (3DP), J. Manuf. Process. (2008). https://doi.org/10.1016/j.jmapro.2009.03.002.

DOI: 10.1016/j.jmapro.2009.03.002

Google Scholar

[8] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol. (2012). https://doi.org/10.1016/S1005-0302(12)60016-4.

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[9] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. (2016). https://doi.org/10.1016/j.actamat.2016.07.019.

DOI: 10.1016/j.actamat.2016.07.019

Google Scholar

[10] W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. (2014). https://doi.org/10.1007/s11665-014-0958-z.

Google Scholar

[11] D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies, Int. J. Mach. Tools Manuf. (1998). https://doi.org/10.1016/S0890-6955(97)00137-5.

Google Scholar

[12] A. Waldbaur, H. Rapp, K. Länge, B.E. Rapp, Let there be chip - Towards rapid prototyping of microfluidic devices: One-step manufacturing processes, Anal. Methods. (2011). https://doi.org/10.1039/c1ay05253e.

DOI: 10.1039/c1ay05253e

Google Scholar

[13] C.W. Ziemian, P.M. Crawn, Computer aided decision support for fused deposition modeling, Rapid Prototyp. J. (2001). https://doi.org/10.1108/13552540110395538.

DOI: 10.1108/13552540110395538

Google Scholar

[14] O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Adv. Manuf. (2015). https://doi.org/10.1007/s40436-014-0097-7.

DOI: 10.1007/s40436-014-0097-7

Google Scholar

[15] X. Yan, P. Gu, A review of rapid prototyping technologies and systems, CAD Comput. Aided Des. (1996). https://doi.org/10.1016/0010-4485(95)00035-6.

Google Scholar

[16] L. Flach, M.A. Jacobs, D.A. Klosterman, R.P. Chartoff, Simulation of Laminated Object Manufacturing (LOM) with variation of process parameters, Solid Free. Fabr. Proceedings, August, 1998. (1998).

Google Scholar

[17] M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies, Int. J. Adv. Manuf. Technol. (2013). https://doi.org/10.1007/s00170-012-4605-2.

DOI: 10.1007/s00170-012-4605-2

Google Scholar

[18] F.H. Froes, B. Dutta, The additive manufacturing (AM) of titanium alloys, in: Adv. Mater. Res., 2014. https://doi.org/10.4028/www.scientific.net/AMR.1019.19.

DOI: 10.4028/www.scientific.net/amr.1019.19

Google Scholar

[19] X. Cui, T. Boland, D. D.D'Lima, M. K. Lotz, Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine, Recent Pat. Drug Deliv. Formul. (2012). https://doi.org/10.2174/187221112800672949.

DOI: 10.2174/187221112800672949

Google Scholar

[20] R.G. Sweet, High frequency recording with electrostatically deflected ink jets, Rev. Sci. Instrum. (1965). https://doi.org/10.1063/1.1719502.

Google Scholar

[21] Z. Cao, H. Xue, United States Patent : 6599524 United States Patent : 6599524, 2 (2014) 2–7. https://patents.google.com/patent/US8202916?oq=Preparing+synthetic+fuels+constituted+of+hydrocarbons+partially+oxygenated+comprises+subjecting+reaction+gas+mixture+containing+carbon+and+hydrogen+to+electric+discharge+inside+reaction+chamber+and+cooling+an.

Google Scholar

[22] E.L. Kyser, S.B. Sears, Method and apparatus for recording with writing fluids and drop projection means therefor, (1976).

Google Scholar

[23] H. Yi, L. Qi, J. Luo, N. Li, Hole-defects in soluble core assisted aluminum droplet printing: Metallurgical mechanisms and elimination methods, Appl. Therm. Eng. (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.013.

DOI: 10.1016/j.applthermaleng.2018.12.013

Google Scholar

[24] H. Yi, L. Qi, J. Luo, D. Zhang, H. Li, X. Hou, Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets, Int. J. Mach. Tools Manuf. (2018). https://doi.org/10.1016/j.ijmachtools.2018.03.006.

DOI: 10.1016/j.ijmachtools.2018.03.006

Google Scholar

[25] J. Luo, W. Wang, W. Xiong, H. Shen, L. Qi, Formation of uniform metal traces using alternate droplet printing, Int. J. Mach. Tools Manuf. (2017). https://doi.org/10.1016/j.ijmachtools.2017.05.004.

DOI: 10.1016/j.ijmachtools.2017.05.004

Google Scholar

[26] Y.P. Chao, L.H. Qi, H.S. Zuo, J. Luo, X.H. Hou, H.J. Li, Remelting and bonding of deposited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture, Int. J. Mach. Tools Manuf. (2013). https://doi.org/10.1016/j.ijmachtools.2013.03.004.

DOI: 10.1016/j.ijmachtools.2013.03.004

Google Scholar

[27] M. Fang, S. Chandra, C.B. Park, Experiments on remelting and solidification of molten metal droplets deposited in vertical columns, J. Manuf. Sci. Eng. Trans. ASME. (2007). https://doi.org/10.1115/1.2540630.

DOI: 10.1115/ht2005-72421

Google Scholar

[28] A. Amirzadeh, M. Raessi, S. Chandra, Producing molten metal droplets smaller than the nozzle diameter using a pneumatic drop-on-demand generator, Exp. Therm. Fluid Sci. (2013). https://doi.org/10.1016/j.expthermflusci.2012.12.006.

DOI: 10.1016/j.expthermflusci.2012.12.006

Google Scholar

[29] J. Luo, L. Qi, Y. Tao, Q. Ma, C.W. Visser, Impact-driven ejection of micro metal droplets on-demand, Int. J. Mach. Tools Manuf. (2016). https://doi.org/10.1016/j.ijmachtools.2016.04.002.

DOI: 10.1016/j.ijmachtools.2016.04.002

Google Scholar

[30] L.H. Qi, Y.P. Chao, J. Luo, J.M. Zhou, X.H. Hou, H.J. Li, A novel selection method of scanning step for fabricating metal components based on micro-droplet deposition manufacture, Int. J. Mach. Tools Manuf. (2012). https://doi.org/10.1016/j.ijmachtools.2011.12.002.

DOI: 10.1016/j.ijmachtools.2011.12.002

Google Scholar

[31] J. Du, Z. Wei, Numerical analysis of pileup process in metal microdroplet deposition manufacture, Int. J. Therm. S ci. (2015). https://doi.org/10.1016/j.ijthermalsci.2015.04.016.

Google Scholar

[32] C.H. Wang, H.L. Tsai, Y.C. Wu, W.S. Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, J. Micromechanics Microengineering. (2016). https://doi.org/10.1088/0960-1317/26/9/095012.

DOI: 10.1088/0960-1317/26/9/095012

Google Scholar

[33] H. Li, P. Wang, L. Qi, H. Zuo, S. Zhong, X. Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Comput. Mater. Sci. (2012). https://doi.org/10.1016/j.commatsci.2012.07.034.

DOI: 10.1016/j.commatsci.2012.07.034

Google Scholar

[34] L.H. Qi, S.Y. Zhong, J. Luo, D.C. Zhang, H.S. Zuo, Quantitative characterization and influence of parameters on surface topography in metal micro-droplet deposition.

Google Scholar

[35] H. Yi, L. Qi, J. Luo, Y. Guo, S. Li, N. Li, Elimination of droplet rebound off soluble substrate in metal droplet deposition, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.01.127.

DOI: 10.1016/j.matlet.2018.01.127

Google Scholar

[36] A.M. Lorenz, E.M. Sachs, S.M. Allen, Techniques for infiltration of a powder metal skeleton by a similar alloy with melting point depressed, (2004).

Google Scholar

[37] N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Additive manufacturing of ceramic-based materials, in: Adv. Eng. Mater., 2014. https://doi.org/10.1002/adem.201400097.

DOI: 10.1002/adem.201400097

Google Scholar

[38] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Additive manufacturing of polymer-derived ceramics, Science (80-. ). (2016). https://doi.org/10.1126/science.aad2688.

DOI: 10.1126/science.aad2688

Google Scholar

[39] K. Mumtaz, P. Vora, N. Hopkinson, A method to eliminate anchors/supports from directly laser melted metal powder bed processes, in: 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011, (2011).

Google Scholar

[40] H. Yi, L. Qi, J. Luo, D. Zhang, N. Li, Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores, J. Mater. Process. Technol. (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.004.

DOI: 10.1016/j.jmatprotec.2018.09.004

Google Scholar

[41] L. Qi, H. Yi, J. Luo, D. Zhang, H. Shen, Embedded printing trace planning for aluminum droplets depositing on dissolvable supports with varying section, Robot. Comput. Integr. Manuf. (2020). https://doi.org/10.1016/j.rcim.2019.101898.

DOI: 10.1016/j.rcim.2019.101898

Google Scholar

[42] R.I. Campbell, M. Martorelli, H.S. Lee, Surface roughness visualisation for rapid prototyping models, CAD Comput. Aided Des. (2002). https://doi.org/10.1016/S0010-4485(01)00201-9.

DOI: 10.1016/s0010-4485(01)00201-9

Google Scholar

[43] B. Bharath Vasudevarao, D.P.. Dharma Prakash Natarajan, M. Henderson, Sensitivitiy of RP Surface Finish to Process Parameter Variation, Solid Free. Fabr. Proc. (2000).

Google Scholar

[44] R. Singh, S. Singh, I.P. Singh, F. Fabbrocino, F. Fraternali, Investigation for surface finish improvement of FDM parts by vapor smoothing process, Compos. Part B Eng. (2017). https://doi.org/10.1016/j.compositesb.2016.11.062.

DOI: 10.1016/j.compositesb.2016.11.062

Google Scholar

[45] B.H. Lee, J. Abdullah, Z.A. Khan, Optimization of rapid prototyping parameters for production of flexible ABS object, J. Mater. Process. Technol. (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.259.

DOI: 10.1016/j.jmatprotec.2005.02.259

Google Scholar

[46] R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modelling, in: J. Mater. Process. Technol., 2001. https://doi.org/10.1016/S0924-0136(01)00980-3.

DOI: 10.1016/s0924-0136(01)00980-3

Google Scholar

[47] H.A. Almeida, A.F. Costa, C. Ramos, C. Torres, M. Minondo, P.J. Bártolo, A. Nunes, D. Kemmoku, J.V.L. Da Silva, Additive manufacturing systems for medical applications: Case studies, in: Addit. Manuf. - Dev. Train. Educ., 2018. https://doi.org/10.1007/978-3-319-76084-1_13.

DOI: 10.1007/978-3-319-76084-1_13

Google Scholar

[48] J.D. Spencer, R.C. Cobb, P.M. Dickens, Vibratory Finishing of Stereolithography Parts, in: Proc. 4th Solid Free. Fabr. Symp. Austin, 9-11 August, (1993).

Google Scholar

[49] M. Schmid, C. Simon, G.N. Levy, Finishing of SLS-parts for rapid manufacturing (RM) - A comprehensive approach, in: 20th Annu. Int. Solid Free. Fabr. Symp. SFF 2009, (2009).

Google Scholar

[50] P.M. Pandey, N.V. Reddy, S.G. Dhande, Improvement of surface finish by staircase machining in fused deposition modeling, J. Mater. Process. Technol. (2003). https://doi.org/10.1016/S0924-0136(02)00953-6.

DOI: 10.1016/s0924-0136(02)00953-6

Google Scholar

[51] Y. He, G.H. Xue, J.Z. Fu, Fabrication of low cost soft tissue prostheses with the desktop 3D printer, Sci. Rep. (2014). https://doi.org/10.1038/srep06973.

DOI: 10.1038/srep06973

Google Scholar

[52] L.M. Galantucci, F. Lavecchia, G. Percoco, Experimental study aiming to enhance the surface finish of fused deposition modeled parts, CIRP Ann. - Manuf. Technol. (2009). https://doi.org/10.1016/j.cirp.2009.03.071.

DOI: 10.1016/j.cirp.2009.03.071

Google Scholar

[53] G. Percoco, F. Lavecchia, L.M. Galantucci, Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing, Res. J. Appl. Sci. Eng. Technol. (2012).

Google Scholar

[54] C. Peng, Y. Fu, H. Wei, S. Li, X. Wang, H. Gao, Study on Improvement of Surface Roughness and Induced Residual Stress for Additively Manufactured Metal Parts by Abrasive Flow Machining, in: Procedia CIRP, 2018. https://doi.org/10.1016/j.procir.2018.05.046.

DOI: 10.1016/j.procir.2018.05.046

Google Scholar

[55] J.A. Ramos, D.L. Bourell, Modeling of surface roughness enhancement of indirect-SLS metal parts by laser surface polishing, Proc. TMS Fall Meet. (2002) 191–202.

DOI: 10.1557/proc-758-ll1.9

Google Scholar

[56] A. Lamikiz, J.A. Sánchez, L.N. López de Lacalle, J.L. Arana, Laser polishing of parts built up by selective laser sintering, Int. J. Mach. Tools Manuf. (2007). https://doi.org/10.1016/j.ijmachtools.2007.01.013.

DOI: 10.1016/j.ijmachtools.2007.01.013

Google Scholar

[57] P.K. Farayibi, T.E. Abioye, J.W. Murray, P.K. Kinnell, A.T. Clare, Surface improvement of laser clad Ti-6Al-4V using plain waterjet and pulsed electron beam irradiation, J. Mater. Process. Technol. (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.035.

DOI: 10.1016/j.jmatprotec.2014.11.035

Google Scholar

[58] J. Ion, Laser Processing of Engineering Materials, 2005. https://doi.org/10.1016/0301-679x(77)90212-2.

Google Scholar

[59] D. Schuöcker, High Power Lasers in Production Engineering, 1999. https://doi.org/10.1142/3386.

Google Scholar

[60] K.C. Yung, S.M. Mei, T.M. Yue, A study of the heat-affected zone in the UV YAG laser drilling of GFRP materials, J. Mater. Process. Technol. (2002). https://doi.org/10.1016/S0924-0136(01)01177-3.

DOI: 10.1016/s0924-0136(01)01177-3

Google Scholar

[61] P.G. Berrie, F.N. Birkett, The drilling and cutting of polymethyl methacrylate (Perspex) by CO2 laser, Opt. Lasers Eng. (1980). https://doi.org/10.1016/0143-8166(80)90003-2.

DOI: 10.1016/0143-8166(80)90003-2

Google Scholar

[62] K.C.A. Crane, J.R. Brown, Laser-induced ablation of fibre/epoxy composites, J. Phys. D. Appl. Phys. (1981). https://doi.org/10.1088/0022-3727/14/12/025.

DOI: 10.1088/0022-3727/14/12/025

Google Scholar

[63] K.C.A. Crane, Steady-state ablation of aluminium alloys by a CO2 laser, J. Phys. D. Appl. Phys. (1982). https://doi.org/10.1088/0022-3727/15/10/027.

DOI: 10.1088/0022-3727/15/10/027

Google Scholar

[64] P.A. Atanasov, E.D. Eugenieva, N.N. Nedialkov, Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study, J. Appl. Phys. (2001). https://doi.org/10.1063/1.1334367.

DOI: 10.1063/1.1334367

Google Scholar

[65] L. Tunna, A. Kearns, W. O'Neill, C.J. Sutcliffe, Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355 nm wavelengths, Opt. Laser Technol. (2001). https://doi.org/10.1016/S0030-3992(00)00126-2.

DOI: 10.1016/s0030-3992(00)00126-2

Google Scholar

[66] M.R.H. Knowles, Micro-ablation with high power pulsed copper vapor lasers, Opt. Express. (2000). https://doi.org/10.1364/oe.7.000050.

DOI: 10.1364/oe.7.000050

Google Scholar

[67] J.S. Lash, R.M. Gilgenbach, Copper vapor laser drilling of copper, iron, and titanium foils in atmospheric pressure air and argon, Rev. Sci. Instrum. (1993). https://doi.org/10.1063/1.1144296.

DOI: 10.1063/1.1144296

Google Scholar

[68] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev. (2016). https://doi.org/10.1080/09506608.2015.1116649.

DOI: 10.1080/09506608.2015.1116649

Google Scholar

[69] R.J. Friel, R.A. Harris, Ultrasonic additive manufacturing A hybrid production process for novel functional products, in: Procedia CIRP, 2013. https://doi.org/10.1016/j.procir.2013.03.004.

DOI: 10.1016/j.procir.2013.03.004

Google Scholar

[70] L.N. Carter, M.M. Attallah, R.C. Reed, Laser Powder Bed Fabrication of Nickel-Base Superalloys: Influence of Parameters; Characterisation, Quantification and Mitigation of Cracking, in: Superalloys 2012, 2012. https://doi.org/10.1002/9781118516430.ch64.

DOI: 10.7449/2012/superalloys_2012_577_586

Google Scholar

[71] W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, K.P. Hoyer, Hot isostatic pressing of IN718 components manufactured by selective laser melting, Addit. Manuf. (2017). https://doi.org/10.1016/j.addma.2016.11.006.

DOI: 10.1016/j.addma.2016.11.006

Google Scholar

[72] K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2011.12.032.

DOI: 10.1016/j.actamat.2011.12.032

Google Scholar

[73] W.J. Sames, ADDITIVE MANUFACTURING OF INCONEL 718 USING ELECTRON BEAM MELTING: PROCESSING, POST-PROCESSING, & MECHANICAL PROPERTIES, Texas A&M University, 2015. https://doi.org/10.1007/BF01559163.

Google Scholar

[74] K.A. Unocic, L.M. Kolbus, R.R. Dehoff, S.N. Dryepondt, B.A. Pint, High-Temperature Performance of UNS N07718 Processed by Additive Manufacturing, in: NACE Corros., (2014).

Google Scholar

[75] A. Strondl, M. Palm, J. Gnauk, G. Frommeyer, Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM), Mater. Sci. Technol. (2011). https://doi.org/10.1179/026708309X12468927349451.

DOI: 10.1179/026708309x12468927349451

Google Scholar

[76] H. Zarringhalam, Post-processing of Duraform parts for Rapid Manufacture, Utwire dengru Texas edu. (2003).

Google Scholar

[77] J. Yang, H. Ouyang, Y. Wang, Direct metal laser fabrication: Machine development and experimental work, Int. J. Adv. Manuf. Technol. (2010). https://doi.org/10.1007/s00170-009-2174-9.

DOI: 10.1007/s00170-009-2174-9

Google Scholar

[78] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, CAD Comput. Aided Des. (2015). https://doi.org/10.1016/j.cad.2015.04.001.

DOI: 10.1016/j.cad.2015.04.001

Google Scholar

[79] S. Guessasma, W. Zhang, J. Zhu, S. Belhabib, H. Nouri, Challenges of additive manufacturing technologies from an optimisation perspective, Int. J. Simul. Multidiscip. Des. Optim. (2015). https://doi.org/10.1051/smdo/2016001.

DOI: 10.1051/smdo/2016001

Google Scholar

[80] S. Guessasma, S. Belhabib, H. Nouri, Significance of pore percolation to drive anisotropic effects of 3D printed polymers revealed with X-ray μ-tomography and finite element computation, Polymer (Guildf). (2015). https://doi.org/10.1016/j.polymer.2015.10.041.

DOI: 10.1016/j.polymer.2015.10.041

Google Scholar

[81] W. Liu, J.N. DuPont, Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping, Scr. Mater. 48 (2003) 1337–1342. https://doi.org/10.1016/S1359-6462(03)00020-4.

DOI: 10.1016/s1359-6462(03)00020-4

Google Scholar

[82] P. Huang, D. Deng, Y. Chen, Modeling and fabrication of heterogeneous three-dimensional objects based on additive manufacturing, in: ASME Int. Mech. Eng. Congr. Expo. Proc., 2013. https://doi.org/10.1115/IMECE2013-65724.

DOI: 10.1115/imece2013-65724

Google Scholar

[83] S. Nelaturi, W. Kim, T. Kurtoglu, Manufacturability feedback and model correction for additive manufacturing, J. Manuf. Sci. Eng. Trans. ASME. (2015). https://doi.org/10.1115/1.4029374.

DOI: 10.1115/1.4029374

Google Scholar

[84] B. Rosa, P. Mognol, J. Hascoët, Laser polishing of additive laser manufacturing surfaces, J. Laser Appl. (2015). https://doi.org/10.2351/1.4906385.

DOI: 10.2351/1.4906385

Google Scholar

[85] M. Zhang, X. Song, W. Grove, E. Hull, Z.J. Pei, F. Ning, W. Cong, Carbon nanotube reinforced fused deposition modeling using microwave irradiation, in: ASME 2016 11th Int. Manuf. Sci. Eng. Conf. MSEC 2016, 2016. https://doi.org/10.1115/MSEC20168790.

DOI: 10.1115/msec2016-8790

Google Scholar

[86] A. Boschetto, L. Bottini, F. Veniali, Finishing of Fused Deposition Modeling parts by CNC machining, Robot. Comput. Integr. Manuf. (2016). https://doi.org/10.1016/j.rcim.2016.03.004.

DOI: 10.1016/j.rcim.2016.03.004

Google Scholar

[87] A. Boschetto, L. Bottini, Surface improvement of fused deposition modeling parts by barrel finishing, Rapid Prototyp. J. (2015). https://doi.org/10.1108/RPJ-10-2013-0105.

DOI: 10.1108/rpj-10-2013-0105

Google Scholar

[88] R. Singh, S. Singh, I.P. Singh, F. Fabbrocino, F. Fraternali, Investigation for surface finish improvement of FDM parts by vapor smoothing process, Compos. Part B Eng. (2017). https://doi.org/10.1016/j.compositesb.2016.11.062.

DOI: 10.1016/j.compositesb.2016.11.062

Google Scholar

[89] K. Li, Z. Zhao, The effect of the surfactants on the formulation of UV-curable SLA alumina suspension, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2016.11.143.

Google Scholar

[90] Q. Yang, Z. Lu, J. Zhou, K. Miao, D. Li, A novel method for improving surface finish of stereolithography apparatus, Int. J. Adv. Manuf. Technol. (2017). https://doi.org/10.1007/s00170-017-0529-1.

DOI: 10.1007/s00170-017-0529-1

Google Scholar

[91] J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. (2018). https://doi.org/10.1016/j.addma.2017.12.002.

Google Scholar

[92] Y. Kaynak, O. Kitay, The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting, Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2018.12.021.

DOI: 10.1016/j.addma.2018.12.021

Google Scholar

[93] E.O. Garzón, J.L. Alves, R.J. Neto, Post-process influence of infiltration on binder jetting technology, in: Adv. Struct. Mater., 2017. https://doi.org/10.1007/978-3-319-50784-2_19.

Google Scholar

[94] A. Yegyan Kumar, Y. Bai, A. Eklund, C.B. Williams, The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing, Addit. Manuf. (2018). https://doi.org/10.1016/j.addma.2018.09.021.

DOI: 10.1016/j.addma.2018.09.021

Google Scholar

[95] A.M. Beese, B.E. Carroll, Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock, JOM. (2016). https://doi.org/10.1007/s11837-015-1759-z.

DOI: 10.1007/s11837-015-1759-z

Google Scholar

[96] X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Compos. Part B Eng. (2017). https://doi.org/10.1016/j.compositesb.2016.11.034.

DOI: 10.1016/j.compositesb.2016.11.034

Google Scholar

[97] G.J. Gibbons, R. Williams, P. Purnell, E. Farahi, 3D Printing of cement composites, Adv. Appl. Ceram. (2010). https://doi.org/10.1179/174367509X12472364600878.

Google Scholar

[98] A. Le Duigou, M. Castro, R. Bevan, N. Martin, 3D printing of wood fibre biocomposites: From mechanical to actuation functionality, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.02.018.

DOI: 10.1016/j.matdes.2016.02.018

Google Scholar

[99] W. Zhang, R. Melcher, N. Travitzky, R.K. Bordia, P. Greil, Three-dimensional printing of complex-shaped alumina/ glass composites, Adv. Eng. Mater. 11 (2009) 1039–1043. https://doi.org/10.1002/adem.200900213.

DOI: 10.1002/adem.200900213

Google Scholar

[100] S.C. Paul, Y.W.D. Tay, B. Panda, M.J. Tan, Fresh and hardened properties of 3D printable cementitious materials for building and construction, Arch. Civ. Mech. Eng. (2018). https://doi.org/10.1016/j.acme.2017.02.008.

DOI: 10.1016/j.acme.2017.02.008

Google Scholar

[101] A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Potential of cold gas dynamic spray as additive manufacturing technology, Int. J. Adv. Manuf. Technol. (2013). https://doi.org/10.1007/s00170-013-5166-8.

DOI: 10.1007/s00170-013-5166-8

Google Scholar

[102] B.E. Carroll, T.A. Palmer, A.M. Beese, Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing, Acta Mater. (2015). https://doi.org/10.1016/j.actamat.2014.12.054.

DOI: 10.1016/j.actamat.2014.12.054

Google Scholar

[103] T. Mühler, C.M. Gomes, J. Heinrich, J. Günster, Slurry-based additive manufacturing of ceramics, Int. J. Appl. Ceram. Technol. (2015). https://doi.org/10.1111/ijac.12113.

DOI: 10.1111/ijac.12113

Google Scholar

[104] W. Cooke, R.A. Tomlinson, R. Burguete, D. Johns, G. Vanard, Anisotropy, homogeneity and ageing in an SLS polymer, Rapid Prototyp. J. (2011). https://doi.org/10.1108/13552541111138397.

DOI: 10.1108/13552541111138397

Google Scholar

[105] S. Guessasma, S. Belhabib, H. Nouri, O. Ben Hassana, Anisotropic damage inferred to 3D printed polymers using fused deposition modelling and subject to severe compression, Eur. Polym. J. (2016). https://doi.org/10.1016/j.eurpolymj.2016.10.030.

DOI: 10.1016/j.eurpolymj.2016.10.030

Google Scholar

[106] Z. He, Y. Chen, J. Yang, C. Tang, J. Lv, Y. Liu, J. Mei, W. ming Lau, D. Hui, Fabrication of Polydimethylsiloxane films with special surface wettability by 3D printing, Compos. Part B Eng. (2017). https://doi.org/10.1016/j.compositesb.2017.07.025.

DOI: 10.1016/j.compositesb.2017.07.025

Google Scholar

[107] C. Zhou, Y. Chen, Three-dimensional digital halftoning for layered manufacturing based on droplets, in: Trans. North Am. Manuf. Res. Inst. SME, (2009).

Google Scholar

[108] P.K. Farayibi, T.E. Abioye, A. Kennedy, A.T. Clare, Development of metal matrix composites by direct energy deposition of satellited, powders, J. Manuf. Process. (2019). https://doi.org/10.1016/j.jmapro.2019.07.029.

DOI: 10.1016/j.jmapro.2019.07.029

Google Scholar

[109] P.K. Farayibi, T.E. Abioye, Additive manufacture of TiB2/Ti-6Al-4V metal matrix composite by selective laser melting, Int. J. Rapid Manuf. 8 (2019) 259. https://doi.org/10.1504/ijrapidm.2019.100514.

DOI: 10.1504/ijrapidm.2019.10020263

Google Scholar