Characterization of Pyrolytic Oil and Char Obtained from Sugarcane Bagasse Pyrolysis

Article Preview

Abstract:

Sugarcane bagasse pyrolysis in a fixed-bed reactor has been studied. The Pyrolytic oil and char obtained were characterized to determine their feasibility as fuels and chemical reagent in other processes. The runs were performed under the following conditions: temperature from 350°C–600°C, sample size of 0.5–1 mm, and an inert gas flow rate of 200 cm3/min. The study aimed to characterize the obtained oil and char to determine their feasibility as source of energy and chemical product. The product has been characterized by different techniques including gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The obtained bio-oil exhibited a molecular formula of CH1.03O0.28 N0.012 and a higher heating value (HHV) of 27.68 MJ/kg. These results indicated that it could be used after refining as a source of fuel and produced a chemical product. In addition, the obtained biochar (HHV = 31.53 MJ/kg) can be used as a solid fuel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tripathi, J. N. Sahu, and P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review,, Renewable and Sustainable Energy Reviews, vol. 55, pp.467-481, (2016).

DOI: 10.1016/j.rser.2015.10.122

Google Scholar

[2] P. McKendry, Energy production from biomass (part 2): conversion technologies,, Bioresource Technology, vol. 83, pp.47-54, 2002/05/01/ (2002).

DOI: 10.1016/s0960-8524(01)00119-5

Google Scholar

[3] A. V. Bridgwater, D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass,, Organic Geochemistry, vol. 30, pp.1479-1493, 1999/12/01/ (1999).

DOI: 10.1016/s0146-6380(99)00120-5

Google Scholar

[4] A. G. H. S. Mohamed R. O. Ali, Seddik S. Wahid, Investigating the Effect of Pyrolysis Parameters on Product Yields of Mixed Wood Sawdust in a Semi-Batch Reactor and its Characterization,, Petroleum and Coal, vol. 62, pp.255-272, 2020/3/21 (2020).

Google Scholar

[5] A. G. H. Saif, S. S. Wahid, and M. R. O. Ali, Pyrolysis of Sugarcane Bagasse: The Effects of Process Parameters on the Product Yields,, Materials Science Forum, vol. 1008, pp.159-167, (2020).

DOI: 10.4028/www.scientific.net/msf.1008.159

Google Scholar

[6] Ö. Onay, S. H. Beis, and Ö. M. Koçkar, Fast pyrolysis of rape seed in a well-swept fixed-bed reactor,, Journal of Analytical and Applied Pyrolysis, vol. 58-59, pp.995-1007, 2001/04/01/ (2001).

DOI: 10.1016/s0165-2370(00)00133-9

Google Scholar

[7] S. Şensöz, İ. Demiral, and H. Ferdi Gerçel, Olive bagasse (Olea europea L.) pyrolysis,, Bioresource Technology, vol. 97, pp.429-436, 2006/02/01/ (2006).

DOI: 10.1016/j.biortech.2005.03.007

Google Scholar

[8] S. H. Beis, Ö. Onay, and Ö. M. Koçkar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions,, Renewable Energy, vol. 26, pp.21-32, 2002/05/01/ (2002).

DOI: 10.1016/s0960-1481(01)00109-4

Google Scholar

[9] C. Acıkgoz, O. Onay, and O. M. Kockar, Fast pyrolysis of linseed: product yields and compositions,, Journal of Analytical and Applied Pyrolysis, vol. 71, pp.417-429, 2004/06/01/ (2004).

DOI: 10.1016/s0165-2370(03)00124-4

Google Scholar

[10] M. Asadullah, M. A. Rahman, M. M. Ali, M. S. Rahman, M. A. Motin, M. B. Sultan, et al., Production of bio-oil from fixed bed pyrolysis of bagasse,, Fuel, vol. 86, pp.2514-2520, 2007/11/01/ (2007).

DOI: 10.1016/j.fuel.2007.02.007

Google Scholar

[11] R. Saikia, R. S. Chutia, R. Kataki, and K. K. Pant, Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials,, Bioresource Technology, vol. 188, pp.265-272, 2015/07/01/ (2015).

DOI: 10.1016/j.biortech.2015.01.089

Google Scholar

[12] B. B. Nyakuma, A. Johari, A. Ahmad, and T. Abdullah, Thermogravimetric analysis of the fuel properties of empty fruit bunch briquettes,, Carbon, vol. 43, p.46.62, (2014).

DOI: 10.11113/jt.v67.2768

Google Scholar

[13] F. Tinwala, P. Mohanty, S. Parmar, A. Patel, and K. K. Pant, Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization,, Bioresource Technology, vol. 188, pp.258-264, 2015/07/01/ (2015).

DOI: 10.1016/j.biortech.2015.02.006

Google Scholar

[14] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis,, Fuel, vol. 86, pp.1781-1788, 2007/08/01/ (2007).

DOI: 10.1016/j.fuel.2006.12.013

Google Scholar

[15] Y. Yao, B. Gao, M. Inyang, A. R. Zimmerman, X. Cao, P. Pullammanappallil, et al., Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential,, Bioresource Technology, vol. 102, pp.6273-6278, 2011/05/01/ (2011).

DOI: 10.1016/j.biortech.2011.03.006

Google Scholar

[16] R. S. Chutia, R. Kataki, and T. Bhaskar, Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake,, Bioresource Technology, vol. 165, pp.336-342, 2014/08/01/ (2014).

DOI: 10.1016/j.biortech.2014.03.118

Google Scholar

[17] W. Chen, S. Shi, J. Zhang, M. Chen, and X. Zhou, Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization,, Energy Conversion and Management, vol. 112, pp.41-48, 2016/03/15/ (2016).

DOI: 10.1016/j.enconman.2016.01.005

Google Scholar

[18] W. T. Tsai, M. K. Lee, and Y. M. Chang, Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor,, Journal of Analytical and Applied Pyrolysis, vol. 76, pp.230-237, 2006/06/01/ (2006).

DOI: 10.1016/j.jaap.2005.11.007

Google Scholar