[1]
Ramana, C. and C.J.C.p.l. Julien, Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition. 2006. 428(1-3): pp.114-118.
DOI: 10.1016/j.cplett.2006.06.117
Google Scholar
[2]
Sian, T.S. and G. Reddy, Stoichiometric amorphous MoO 3 films: a route to high performance electrochromic devices. 2005, American Institute of Physics.
DOI: 10.1063/1.1949271
Google Scholar
[3]
Smith, M., et al., Effect of surface species on activity and selectivity of MoO 3/SiO 2 catalysts in partial oxidation of methane to formaldehyde. 1993. 19(1): pp.1-15.
Google Scholar
[4]
Bange, K.J.S.E.M. and S. Cells, Colouration of tungsten oxide films: a model for optically active coatings. 1999. 58(1): p.1.
DOI: 10.1016/s0927-0248(98)00196-2
Google Scholar
[5]
Granqvist, C.J.A.P.A., Transparent conductive electrodes for electrochromic devices: a review. 1993. 57(1): pp.19-24.
Google Scholar
[6]
Lee, H., et al., The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N'-bis (1-naphthyl)-N, N'-diphenyl-1, 1'-biphenyl-4, 4'-diamine interfaces. 2008. 93(4): p.279.
DOI: 10.1063/1.2965120
Google Scholar
[7]
Mutschall, D., et al., Sputtered molybdenum oxide thin films for NH3 detection. 1996. 36(1-3): pp.320-324.
DOI: 10.1016/s0925-4005(97)80089-5
Google Scholar
[8]
Shrotriya, V., et al., Transition metal oxides as the buffer layer for polymer photovoltaic cells. 2006. 88(7): p.073508.
DOI: 10.1063/1.2174093
Google Scholar
[9]
Navas, I., et al., Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing. 2009. 42(17): p.175305.
DOI: 10.1088/0022-3727/42/17/175305
Google Scholar
[10]
Aoki, T., et al., Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method. 2008. 517(4): pp.1482-1486.
DOI: 10.1016/j.tsf.2008.09.060
Google Scholar
[11]
Boudaoud, L., et al., Structural and optical properties of MoO3 and V2O5 thin films prepared by Spray Pyrolysis. 2006. 113(3-4): pp.230-234.
DOI: 10.1016/j.cattod.2005.11.072
Google Scholar
[12]
Lee, Y.J., et al., Chemical vapour transport synthesis and optical characterization of MoO3 thin films. 2009. 42(11): p.115419.
Google Scholar
[13]
Galatsis, K., et al., MoO 3, WO 3 Single and Binary Oxide Prepared by Sol-Gel Method for Gas Sensing Applications. 2003. 26(1-3): pp.1097-1101.
Google Scholar
[14]
Sivakumar, R., et al., Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature. 2007. 7(1): pp.51-59.
DOI: 10.1016/j.cap.2005.10.001
Google Scholar
[15]
Ohring, M.J.S.D.N.y.B., Materials Science of Thin Films Academic Press. (1992).
Google Scholar
[16]
Simchi, H., et al., Characterization of reactively sputtered molybdenum oxide films for solar cell application. 2013. 114(1): p.013503.
DOI: 10.1063/1.4812587
Google Scholar
[17]
Brewer, L. and R.J.B.o.A.P.D. Lamoreaux, The Mo-O system (molybdenum-oxygen). 1980. 1(2): pp.85-89.
Google Scholar
[18]
Auborn, J. and Y.J.J.o.T.E.S. Barberio, Lithium intercalation cells without metallic lithium. 1987. 134(3): pp.638-640.
DOI: 10.1149/1.2100521
Google Scholar
[19]
Youn, S.W., J.H. Bihn, and B.S.J.O.l. Kim, Pd-catalyzed intramolecular oxidative C–H amination: synthesis of carbazoles. 2011. 13(14): pp.3738-3741.
DOI: 10.1021/ol201416u
Google Scholar
[20]
Dhar, N., et al., An investigation on structural and electrical properties of RF-sputtered molybdenum thin film deposited on different substrates. 2013. 33: pp.186-197.
DOI: 10.1016/j.egypro.2013.05.057
Google Scholar
[21]
Santos, E.d.B., Sistemas químicos nanoestruturados= nanopartículas caroço-casca em suporte poroso funcional e filmes finos alternados de óxidos semicondutores (TiO2, MoO3, WO3). (2011).
DOI: 10.47749/t/unicamp.2011.840343
Google Scholar
[22]
Manteghain, M., et al., Microwave-assisted synthesis of molybdenum oxide nanoparticles. 2015. 1(2): pp.121-127.
Google Scholar
[23]
Subbarayudu, S., V. Madhavi, and S.J.I.S.R.N. Uthanna, Growth of films by RF magnetron sputtering: studies on the structural, optical, and electrochromic properties. 2013. (2013).
DOI: 10.1155/2013/806374
Google Scholar
[24]
Bihn, J.-H., J.-Y. Park, and Y.-C.J.J.o.t.K.p.s. Kang, Synthesis and characterization of Mo films deposited by RF sputtering at various oxygen ratios. 2011. 58(3): pp.509-514.
DOI: 10.3938/jkps.58.509
Google Scholar
[25]
Spindt, C.J.J.o.A.P., A thin‐film field‐emission cathode. 1968. 39(7): pp.3504-3505.
DOI: 10.1063/1.1656810
Google Scholar
[26]
Pethe, S.A., et al., Effect of sputtering process parameters on film properties of molybdenum back contact. 2012. 100: pp.1-5.
Google Scholar
[27]
Donnadieu, A., D. Davazoglou, and A.J.T.S.F. Abdellaoui, Structure, optical and electro-optical properties of polycrystalline WO3 and MoO3 thin films prepared by chemical vapour deposition. 1988. 164: pp.333-338.
DOI: 10.1016/0040-6090(88)90158-7
Google Scholar
[28]
Purohit, V.S., et al., Scanning tunneling microscopic and field emission microscopic studies of nanostructured molybdenum film synthesized by electron cyclotron resonance plasma. 2008. 83(2): pp.435-443.
DOI: 10.1016/j.vacuum.2008.04.077
Google Scholar
[29]
Selvakumar, N., et al., Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. 2010. 94(8): pp.1412-1420.
DOI: 10.1016/j.solmat.2010.04.073
Google Scholar
[30]
Reyes-Betanzo, C., et al., Refractive index of colored films of molybdenum trioxide. 2000. 88(1): pp.223-226.
DOI: 10.1063/1.373646
Google Scholar
[31]
Erdemir, A., et al., 25 Tribology of Nanostructured and Composite Coatings. (2006).
Google Scholar
[32]
Lyo, I.-W., et al., Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings. 2003. 163: pp.413-421.
DOI: 10.1016/s0257-8972(02)00613-8
Google Scholar