An Influence of Oxygen Flow Rate on Structural, Optical and Tribological Properties of Molybdenum Oxide Thin Films

Article Preview

Abstract:

The influence of oxygen flow rate is examined on structural, optical and tribological properties of molybdenum oxide films deposited by reactive magnetron sputtering. The films were characterized by X-ray diffraction, scanning electron microscope (SEM), and contact angle measurement system. The optical properties of the films were measured by UV-Vis-NIR spectrophotometer and transmittance of ∼73% in the visible region of the spectrum was achieved. The band gap increases with increases in oxygen gas flow rate. AFM figure illustrates that the roughness of surface increases as oxygen flow rate increases. As oxygen increases wear rate and COF decreases while at the 18 sccm the lowest wear rate found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-53

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ramana, C. and C.J.C.p.l. Julien, Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition. 2006. 428(1-3): pp.114-118.

DOI: 10.1016/j.cplett.2006.06.117

Google Scholar

[2] Sian, T.S. and G. Reddy, Stoichiometric amorphous MoO 3 films: a route to high performance electrochromic devices. 2005, American Institute of Physics.

DOI: 10.1063/1.1949271

Google Scholar

[3] Smith, M., et al., Effect of surface species on activity and selectivity of MoO 3/SiO 2 catalysts in partial oxidation of methane to formaldehyde. 1993. 19(1): pp.1-15.

Google Scholar

[4] Bange, K.J.S.E.M. and S. Cells, Colouration of tungsten oxide films: a model for optically active coatings. 1999. 58(1): p.1.

DOI: 10.1016/s0927-0248(98)00196-2

Google Scholar

[5] Granqvist, C.J.A.P.A., Transparent conductive electrodes for electrochromic devices: a review. 1993. 57(1): pp.19-24.

Google Scholar

[6] Lee, H., et al., The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N'-bis (1-naphthyl)-N, N'-diphenyl-1, 1'-biphenyl-4, 4'-diamine interfaces. 2008. 93(4): p.279.

DOI: 10.1063/1.2965120

Google Scholar

[7] Mutschall, D., et al., Sputtered molybdenum oxide thin films for NH3 detection. 1996. 36(1-3): pp.320-324.

DOI: 10.1016/s0925-4005(97)80089-5

Google Scholar

[8] Shrotriya, V., et al., Transition metal oxides as the buffer layer for polymer photovoltaic cells. 2006. 88(7): p.073508.

DOI: 10.1063/1.2174093

Google Scholar

[9] Navas, I., et al., Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing. 2009. 42(17): p.175305.

DOI: 10.1088/0022-3727/42/17/175305

Google Scholar

[10] Aoki, T., et al., Optical recording characteristics of molybdenum oxide films prepared by pulsed laser deposition method. 2008. 517(4): pp.1482-1486.

DOI: 10.1016/j.tsf.2008.09.060

Google Scholar

[11] Boudaoud, L., et al., Structural and optical properties of MoO3 and V2O5 thin films prepared by Spray Pyrolysis. 2006. 113(3-4): pp.230-234.

DOI: 10.1016/j.cattod.2005.11.072

Google Scholar

[12] Lee, Y.J., et al., Chemical vapour transport synthesis and optical characterization of MoO3 thin films. 2009. 42(11): p.115419.

Google Scholar

[13] Galatsis, K., et al., MoO 3, WO 3 Single and Binary Oxide Prepared by Sol-Gel Method for Gas Sensing Applications. 2003. 26(1-3): pp.1097-1101.

Google Scholar

[14] Sivakumar, R., et al., Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature. 2007. 7(1): pp.51-59.

DOI: 10.1016/j.cap.2005.10.001

Google Scholar

[15] Ohring, M.J.S.D.N.y.B., Materials Science of Thin Films Academic Press. (1992).

Google Scholar

[16] Simchi, H., et al., Characterization of reactively sputtered molybdenum oxide films for solar cell application. 2013. 114(1): p.013503.

DOI: 10.1063/1.4812587

Google Scholar

[17] Brewer, L. and R.J.B.o.A.P.D. Lamoreaux, The Mo-O system (molybdenum-oxygen). 1980. 1(2): pp.85-89.

Google Scholar

[18] Auborn, J. and Y.J.J.o.T.E.S. Barberio, Lithium intercalation cells without metallic lithium. 1987. 134(3): pp.638-640.

DOI: 10.1149/1.2100521

Google Scholar

[19] Youn, S.W., J.H. Bihn, and B.S.J.O.l. Kim, Pd-catalyzed intramolecular oxidative C–H amination: synthesis of carbazoles. 2011. 13(14): pp.3738-3741.

DOI: 10.1021/ol201416u

Google Scholar

[20] Dhar, N., et al., An investigation on structural and electrical properties of RF-sputtered molybdenum thin film deposited on different substrates. 2013. 33: pp.186-197.

DOI: 10.1016/j.egypro.2013.05.057

Google Scholar

[21] Santos, E.d.B., Sistemas químicos nanoestruturados= nanopartículas caroço-casca em suporte poroso funcional e filmes finos alternados de óxidos semicondutores (TiO2, MoO3, WO3). (2011).

DOI: 10.47749/t/unicamp.2011.840343

Google Scholar

[22] Manteghain, M., et al., Microwave-assisted synthesis of molybdenum oxide nanoparticles. 2015. 1(2): pp.121-127.

Google Scholar

[23] Subbarayudu, S., V. Madhavi, and S.J.I.S.R.N. Uthanna, Growth of films by RF magnetron sputtering: studies on the structural, optical, and electrochromic properties. 2013. (2013).

DOI: 10.1155/2013/806374

Google Scholar

[24] Bihn, J.-H., J.-Y. Park, and Y.-C.J.J.o.t.K.p.s. Kang, Synthesis and characterization of Mo films deposited by RF sputtering at various oxygen ratios. 2011. 58(3): pp.509-514.

DOI: 10.3938/jkps.58.509

Google Scholar

[25] Spindt, C.J.J.o.A.P., A thin‐film field‐emission cathode. 1968. 39(7): pp.3504-3505.

DOI: 10.1063/1.1656810

Google Scholar

[26] Pethe, S.A., et al., Effect of sputtering process parameters on film properties of molybdenum back contact. 2012. 100: pp.1-5.

Google Scholar

[27] Donnadieu, A., D. Davazoglou, and A.J.T.S.F. Abdellaoui, Structure, optical and electro-optical properties of polycrystalline WO3 and MoO3 thin films prepared by chemical vapour deposition. 1988. 164: pp.333-338.

DOI: 10.1016/0040-6090(88)90158-7

Google Scholar

[28] Purohit, V.S., et al., Scanning tunneling microscopic and field emission microscopic studies of nanostructured molybdenum film synthesized by electron cyclotron resonance plasma. 2008. 83(2): pp.435-443.

DOI: 10.1016/j.vacuum.2008.04.077

Google Scholar

[29] Selvakumar, N., et al., Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers. 2010. 94(8): pp.1412-1420.

DOI: 10.1016/j.solmat.2010.04.073

Google Scholar

[30] Reyes-Betanzo, C., et al., Refractive index of colored films of molybdenum trioxide. 2000. 88(1): pp.223-226.

DOI: 10.1063/1.373646

Google Scholar

[31] Erdemir, A., et al., 25 Tribology of Nanostructured and Composite Coatings. (2006).

Google Scholar

[32] Lyo, I.-W., et al., Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings. 2003. 163: pp.413-421.

DOI: 10.1016/s0257-8972(02)00613-8

Google Scholar